Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine

Descripción del Articulo

The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Reg...

Descripción completa

Detalles Bibliográficos
Autores: Quispe-Tello, Rosa Liliam, Donaires-Flores, Teofilo, Noriega-Vidal, Eduardo Manuel, Arango-Retamozo, Solio Marino, Gonzalez-Vasquez, Joe Alexis, Mamani-Quispe, Jose Nestor, Marquina-Araujo, Jairo Jhonatan, Cotrina-Teatino, Marco Antonio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14525
Enlace del recurso:https://hdl.handle.net/20.500.12867/14525
https://doi.org/10.18280/mmep.111004
Nivel de acceso:acceso abierto
Materia:Machine learning techniques
Blasting
Open-pit mining
Explosives
https://purl.org/pe-repo/ocde/ford#2.02.01
id UTPD_36723ef8e15a81eb05380feb8015b549
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14525
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
title Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
spellingShingle Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
Quispe-Tello, Rosa Liliam
Machine learning techniques
Blasting
Open-pit mining
Explosives
https://purl.org/pe-repo/ocde/ford#2.02.01
title_short Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
title_full Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
title_fullStr Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
title_full_unstemmed Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
title_sort Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
author Quispe-Tello, Rosa Liliam
author_facet Quispe-Tello, Rosa Liliam
Donaires-Flores, Teofilo
Noriega-Vidal, Eduardo Manuel
Arango-Retamozo, Solio Marino
Gonzalez-Vasquez, Joe Alexis
Mamani-Quispe, Jose Nestor
Marquina-Araujo, Jairo Jhonatan
Cotrina-Teatino, Marco Antonio
author_role author
author2 Donaires-Flores, Teofilo
Noriega-Vidal, Eduardo Manuel
Arango-Retamozo, Solio Marino
Gonzalez-Vasquez, Joe Alexis
Mamani-Quispe, Jose Nestor
Marquina-Araujo, Jairo Jhonatan
Cotrina-Teatino, Marco Antonio
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Quispe-Tello, Rosa Liliam
Donaires-Flores, Teofilo
Noriega-Vidal, Eduardo Manuel
Arango-Retamozo, Solio Marino
Gonzalez-Vasquez, Joe Alexis
Mamani-Quispe, Jose Nestor
Marquina-Araujo, Jairo Jhonatan
Cotrina-Teatino, Marco Antonio
dc.subject.es_PE.fl_str_mv Machine learning techniques
Blasting
Open-pit mining
Explosives
topic Machine learning techniques
Blasting
Open-pit mining
Explosives
https://purl.org/pe-repo/ocde/ford#2.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.01
description The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Regression (SVR), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (BR), due to their ability to handle complex multidimensional data and their success in similar applications, such as rock fragmentation prediction. The methodology included the collection of data from 208 drill holes, which were divided into training (70%), validation (15%), and testing (15%) sets. The models were evaluated using RMSE, MSE, MAE, and R2. The KNN model showed the best performance, with an R2 of 0.84, RMSE of 2.37, MSE of 5.60, and MAE of 1.35, standing out in predictive accuracy. This study contributes to the accurate prediction of the ANFO quantity required for bench blasting in open-pit mining, providing a useful tool for improving explosives management based on the specific characteristics of the terrain and operational conditions.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-08T19:40:47Z
dc.date.available.none.fl_str_mv 2025-11-08T19:40:47Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2369-0739
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14525
dc.identifier.journal.es_PE.fl_str_mv Mathematical Modelling of Engineering Problems
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18280/mmep.111004
identifier_str_mv 2369-0739
Mathematical Modelling of Engineering Problems
url https://hdl.handle.net/20.500.12867/14525
https://doi.org/10.18280/mmep.111004
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Information and Engineering Technology Association
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/29086d0c-259c-41a1-9b91-4cda22c79b6f/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/42213e2a-d017-4dcd-9ae8-c6ac829eeb9d/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2822118f-1ade-4edf-83cf-3b94bc09b589/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8252b7cc-5a8b-4e04-9d94-e543e601819f/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eaa04a67-563f-4f25-85eb-eb842c7d08b2/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/aa84ec88-6584-4671-8495-88c966b8bce8/download
bitstream.checksum.fl_str_mv 5d7b855607af34e4cbbd31518763b439
8a4605be74aa9ea9d79846c1fba20a33
b1e7f2d7dcf32efb8ee6736997fe588d
43bb9cee6e9705c40afbfb12015282fc
502b19fab8a5b8dcf14856590c35104c
a7d85ea36f99675177814f1fb6e6746d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865146448248832
spelling Quispe-Tello, Rosa LiliamDonaires-Flores, TeofiloNoriega-Vidal, Eduardo ManuelArango-Retamozo, Solio MarinoGonzalez-Vasquez, Joe AlexisMamani-Quispe, Jose NestorMarquina-Araujo, Jairo JhonatanCotrina-Teatino, Marco Antonio2025-11-08T19:40:47Z2025-11-08T19:40:47Z20242369-0739https://hdl.handle.net/20.500.12867/14525Mathematical Modelling of Engineering Problemshttps://doi.org/10.18280/mmep.111004The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Regression (SVR), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (BR), due to their ability to handle complex multidimensional data and their success in similar applications, such as rock fragmentation prediction. The methodology included the collection of data from 208 drill holes, which were divided into training (70%), validation (15%), and testing (15%) sets. The models were evaluated using RMSE, MSE, MAE, and R2. The KNN model showed the best performance, with an R2 of 0.84, RMSE of 2.37, MSE of 5.60, and MAE of 1.35, standing out in predictive accuracy. This study contributes to the accurate prediction of the ANFO quantity required for bench blasting in open-pit mining, providing a useful tool for improving explosives management based on the specific characteristics of the terrain and operational conditions.Campus Arequipaapplication/pdfengInternational Information and Engineering Technology Associationinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learning techniquesBlastingOpen-pit miningExplosiveshttps://purl.org/pe-repo/ocde/ford#2.02.01Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mineinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdfR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdfapplication/pdf2437327https://repositorio.utp.edu.pe/backend/api/core/bitstreams/29086d0c-259c-41a1-9b91-4cda22c79b6f/download5d7b855607af34e4cbbd31518763b439MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/42213e2a-d017-4dcd-9ae8-c6ac829eeb9d/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.txtQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.txtExtracted texttext/plain57789https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2822118f-1ade-4edf-83cf-3b94bc09b589/downloadb1e7f2d7dcf32efb8ee6736997fe588dMD53R.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.txtR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.txtExtracted texttext/plain59883https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8252b7cc-5a8b-4e04-9d94-e543e601819f/download43bb9cee6e9705c40afbfb12015282fcMD57THUMBNAILQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.jpgQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg26125https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eaa04a67-563f-4f25-85eb-eb842c7d08b2/download502b19fab8a5b8dcf14856590c35104cMD54R.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.jpgR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg50974https://repositorio.utp.edu.pe/backend/api/core/bitstreams/aa84ec88-6584-4671-8495-88c966b8bce8/downloada7d85ea36f99675177814f1fb6e6746dMD5820.500.12867/14525oai:repositorio.utp.edu.pe:20.500.12867/145252025-11-30 15:44:21.307https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.926692
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).