Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine
Descripción del Articulo
The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Reg...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14525 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14525 https://doi.org/10.18280/mmep.111004 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning techniques Blasting Open-pit mining Explosives https://purl.org/pe-repo/ocde/ford#2.02.01 |
| id |
UTPD_36723ef8e15a81eb05380feb8015b549 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14525 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| title |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| spellingShingle |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine Quispe-Tello, Rosa Liliam Machine learning techniques Blasting Open-pit mining Explosives https://purl.org/pe-repo/ocde/ford#2.02.01 |
| title_short |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| title_full |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| title_fullStr |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| title_full_unstemmed |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| title_sort |
Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mine |
| author |
Quispe-Tello, Rosa Liliam |
| author_facet |
Quispe-Tello, Rosa Liliam Donaires-Flores, Teofilo Noriega-Vidal, Eduardo Manuel Arango-Retamozo, Solio Marino Gonzalez-Vasquez, Joe Alexis Mamani-Quispe, Jose Nestor Marquina-Araujo, Jairo Jhonatan Cotrina-Teatino, Marco Antonio |
| author_role |
author |
| author2 |
Donaires-Flores, Teofilo Noriega-Vidal, Eduardo Manuel Arango-Retamozo, Solio Marino Gonzalez-Vasquez, Joe Alexis Mamani-Quispe, Jose Nestor Marquina-Araujo, Jairo Jhonatan Cotrina-Teatino, Marco Antonio |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Quispe-Tello, Rosa Liliam Donaires-Flores, Teofilo Noriega-Vidal, Eduardo Manuel Arango-Retamozo, Solio Marino Gonzalez-Vasquez, Joe Alexis Mamani-Quispe, Jose Nestor Marquina-Araujo, Jairo Jhonatan Cotrina-Teatino, Marco Antonio |
| dc.subject.es_PE.fl_str_mv |
Machine learning techniques Blasting Open-pit mining Explosives |
| topic |
Machine learning techniques Blasting Open-pit mining Explosives https://purl.org/pe-repo/ocde/ford#2.02.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.01 |
| description |
The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Regression (SVR), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (BR), due to their ability to handle complex multidimensional data and their success in similar applications, such as rock fragmentation prediction. The methodology included the collection of data from 208 drill holes, which were divided into training (70%), validation (15%), and testing (15%) sets. The models were evaluated using RMSE, MSE, MAE, and R2. The KNN model showed the best performance, with an R2 of 0.84, RMSE of 2.37, MSE of 5.60, and MAE of 1.35, standing out in predictive accuracy. This study contributes to the accurate prediction of the ANFO quantity required for bench blasting in open-pit mining, providing a useful tool for improving explosives management based on the specific characteristics of the terrain and operational conditions. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-08T19:40:47Z |
| dc.date.available.none.fl_str_mv |
2025-11-08T19:40:47Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2369-0739 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14525 |
| dc.identifier.journal.es_PE.fl_str_mv |
Mathematical Modelling of Engineering Problems |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18280/mmep.111004 |
| identifier_str_mv |
2369-0739 Mathematical Modelling of Engineering Problems |
| url |
https://hdl.handle.net/20.500.12867/14525 https://doi.org/10.18280/mmep.111004 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
International Information and Engineering Technology Association |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/29086d0c-259c-41a1-9b91-4cda22c79b6f/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/42213e2a-d017-4dcd-9ae8-c6ac829eeb9d/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2822118f-1ade-4edf-83cf-3b94bc09b589/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8252b7cc-5a8b-4e04-9d94-e543e601819f/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eaa04a67-563f-4f25-85eb-eb842c7d08b2/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/aa84ec88-6584-4671-8495-88c966b8bce8/download |
| bitstream.checksum.fl_str_mv |
5d7b855607af34e4cbbd31518763b439 8a4605be74aa9ea9d79846c1fba20a33 b1e7f2d7dcf32efb8ee6736997fe588d 43bb9cee6e9705c40afbfb12015282fc 502b19fab8a5b8dcf14856590c35104c a7d85ea36f99675177814f1fb6e6746d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865146448248832 |
| spelling |
Quispe-Tello, Rosa LiliamDonaires-Flores, TeofiloNoriega-Vidal, Eduardo ManuelArango-Retamozo, Solio MarinoGonzalez-Vasquez, Joe AlexisMamani-Quispe, Jose NestorMarquina-Araujo, Jairo JhonatanCotrina-Teatino, Marco Antonio2025-11-08T19:40:47Z2025-11-08T19:40:47Z20242369-0739https://hdl.handle.net/20.500.12867/14525Mathematical Modelling of Engineering Problemshttps://doi.org/10.18280/mmep.111004The objective of this study is to predict the quantity of ANFO required for bench blasting in an open pit mine in Peru, through the application of advanced machine learning techniques. Six models were selected: Artificial Neural Networks (ANNMLP), Random Forests (RF), Support Vector Machines for Regression (SVR), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (BR), due to their ability to handle complex multidimensional data and their success in similar applications, such as rock fragmentation prediction. The methodology included the collection of data from 208 drill holes, which were divided into training (70%), validation (15%), and testing (15%) sets. The models were evaluated using RMSE, MSE, MAE, and R2. The KNN model showed the best performance, with an R2 of 0.84, RMSE of 2.37, MSE of 5.60, and MAE of 1.35, standing out in predictive accuracy. This study contributes to the accurate prediction of the ANFO quantity required for bench blasting in open-pit mining, providing a useful tool for improving explosives management based on the specific characteristics of the terrain and operational conditions.Campus Arequipaapplication/pdfengInternational Information and Engineering Technology Associationinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learning techniquesBlastingOpen-pit miningExplosiveshttps://purl.org/pe-repo/ocde/ford#2.02.01Machine learning techniques for predicting the quantity of ANFO used in blasting a bench in an open pit mineinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdfR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdfapplication/pdf2437327https://repositorio.utp.edu.pe/backend/api/core/bitstreams/29086d0c-259c-41a1-9b91-4cda22c79b6f/download5d7b855607af34e4cbbd31518763b439MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/42213e2a-d017-4dcd-9ae8-c6ac829eeb9d/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.txtQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.txtExtracted texttext/plain57789https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2822118f-1ade-4edf-83cf-3b94bc09b589/downloadb1e7f2d7dcf32efb8ee6736997fe588dMD53R.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.txtR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.txtExtracted texttext/plain59883https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8252b7cc-5a8b-4e04-9d94-e543e601819f/download43bb9cee6e9705c40afbfb12015282fcMD57THUMBNAILQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.jpgQuispe.R_Donaires.T_Noriega.E_Arango.S_Gonzalez.J_Mamani.J_Marquina.J_Cotrina.M_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg26125https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eaa04a67-563f-4f25-85eb-eb842c7d08b2/download502b19fab8a5b8dcf14856590c35104cMD54R.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.jpgR.Quispe_T.Donaires_E.Noriega_S.Arango_J.Gonzalez_J.Mamani_J.Marquina_M.Cotrina_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg50974https://repositorio.utp.edu.pe/backend/api/core/bitstreams/aa84ec88-6584-4671-8495-88c966b8bce8/downloada7d85ea36f99675177814f1fb6e6746dMD5820.500.12867/14525oai:repositorio.utp.edu.pe:20.500.12867/145252025-11-30 15:44:21.307https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.926692 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).