Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque
Descripción del Articulo
Esta investigación lleva como título “ANÁLISIS COMPARATIVO DE ADAPTIVE BOOSTING Y DECISION TREE PARA PREDECIR LA MOROSIDAD DE CUOTAS SOCIALES DEL COLEGIO DE INGENIEROS DEL PERÚ CONSEJO DEPARTAMENTAL LAMBAYEQUE” tuvo como finalidad emplear y comparar dos algoritmos de predicción, las cuales fueron Ad...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Señor de Sipan |
| Repositorio: | USS-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/9149 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12802/9149 |
| Nivel de acceso: | acceso abierto |
| Materia: | Incumplimiento de Pago Morosidad Adaptive Boosting Adaboost Arbol de Decisión C5.0 Aprendizaje Automático https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
USSS_66af6b102204b05b4b765783f02d2d65 |
|---|---|
| oai_identifier_str |
oai:repositorio.uss.edu.pe:20.500.12802/9149 |
| network_acronym_str |
USSS |
| network_name_str |
USS-Institucional |
| repository_id_str |
4829 |
| dc.title.es_PE.fl_str_mv |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| title |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| spellingShingle |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque Silva Parraguez, Máximo Gabriel Incumplimiento de Pago Morosidad Adaptive Boosting Adaboost Arbol de Decisión C5.0 Aprendizaje Automático https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| title_full |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| title_fullStr |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| title_full_unstemmed |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| title_sort |
Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque |
| author |
Silva Parraguez, Máximo Gabriel |
| author_facet |
Silva Parraguez, Máximo Gabriel |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Mejia Cabrera, Heber Ivan |
| dc.contributor.author.fl_str_mv |
Silva Parraguez, Máximo Gabriel |
| dc.subject.es_PE.fl_str_mv |
Incumplimiento de Pago Morosidad Adaptive Boosting Adaboost Arbol de Decisión C5.0 Aprendizaje Automático |
| topic |
Incumplimiento de Pago Morosidad Adaptive Boosting Adaboost Arbol de Decisión C5.0 Aprendizaje Automático https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Esta investigación lleva como título “ANÁLISIS COMPARATIVO DE ADAPTIVE BOOSTING Y DECISION TREE PARA PREDECIR LA MOROSIDAD DE CUOTAS SOCIALES DEL COLEGIO DE INGENIEROS DEL PERÚ CONSEJO DEPARTAMENTAL LAMBAYEQUE” tuvo como finalidad emplear y comparar dos algoritmos de predicción, las cuales fueron Adaptive Boosting (AdaBoost) y Árbol de Decisiones (Decision Tree), para llegar a la conclusión de conocer que algoritmo es más eficiente para predecir o pronosticar la morosidad. El interés por la presente investigación surge porque hasta el momento, si bien hay estudios parecidos al presente trabajo, los resultados finales no son iguales para todos, es decir, en cada uno de los estudios, la técnica que mejor se comporta siempre depende de los datos y por ende al tipo de estudio que se esta realizando, entonces surge así el interés de saber cual de ambas técnicas se comportará mas eficientemente en el pronóstico de morosidad en el Colegio de Ingenieros CD Lambayeque. Entonces, para poder determinar que técnica es la mejor, se evaluó la exactitud, sensibilidad, especificidad y la curva ROC, y se empleó el desarrollo de ETL para la extracción de los datos de los colegiados y sus pagos respetivos por cada mes, y se tomaron los datos mas representativos después de varios análisis, todo esto para que sean correctamente procesados por las técnicas, y así obtener resultados apropiados, para que la toma de decisiones sea lo más certera posible. Al realizar todo el proceso del método propuesto se obtuvieron como resultados que ambas técnicas aplicadas al conjunto de datos asignados son muy parecidos, pero con una pequeña mejora en la técnica de Decision Tree contra Adaboost, con 86.73% contra 86.71%, además cabe destacar que Decision Tree tardo en promedio 0.70 segundos, contra 2.49 segundos de Adaboost. Por lo tanto, se llegó a la conclusión de que haciendo uso de la herramienta R donde fueron Implementados ambas técnicas, se demostró de que Decisión Tree ganó por poco a Adaboost en Accuracy. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-02-22T13:38:33Z |
| dc.date.available.none.fl_str_mv |
2022-02-22T13:38:33Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12802/9149 |
| url |
https://hdl.handle.net/20.500.12802/9149 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Señor de Sipán |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - USS Repositorio Institucional USS |
| dc.source.none.fl_str_mv |
reponame:USS-Institucional instname:Universidad Señor de Sipan instacron:USS |
| instname_str |
Universidad Señor de Sipan |
| instacron_str |
USS |
| institution |
USS |
| reponame_str |
USS-Institucional |
| collection |
USS-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/1/Silva%20Parraguez%20M%c3%a1ximo%20Gabriel.pdf https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/2/license_rdf https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/3/license.txt https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/4/Silva%20Parraguez%20M%c3%a1ximo%20Gabriel.pdf.txt https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/5/Silva%20Parraguez%20M%c3%a1ximo%20Gabriel.pdf.jpg |
| bitstream.checksum.fl_str_mv |
da2037f5c85799cea4d60e49696f5894 3655808e5dd46167956d6870b0f43800 8a4605be74aa9ea9d79846c1fba20a33 ecba179fb485a6c22a83b52479323c9e 8543c2d21ac8c1cb9c25c488261e9f08 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Señor de Sipán |
| repository.mail.fl_str_mv |
repositorio@uss.edu.pe |
| _version_ |
1845884040396144640 |
| spelling |
Mejia Cabrera, Heber IvanSilva Parraguez, Máximo Gabriel2022-02-22T13:38:33Z2022-02-22T13:38:33Z2022https://hdl.handle.net/20.500.12802/9149Esta investigación lleva como título “ANÁLISIS COMPARATIVO DE ADAPTIVE BOOSTING Y DECISION TREE PARA PREDECIR LA MOROSIDAD DE CUOTAS SOCIALES DEL COLEGIO DE INGENIEROS DEL PERÚ CONSEJO DEPARTAMENTAL LAMBAYEQUE” tuvo como finalidad emplear y comparar dos algoritmos de predicción, las cuales fueron Adaptive Boosting (AdaBoost) y Árbol de Decisiones (Decision Tree), para llegar a la conclusión de conocer que algoritmo es más eficiente para predecir o pronosticar la morosidad. El interés por la presente investigación surge porque hasta el momento, si bien hay estudios parecidos al presente trabajo, los resultados finales no son iguales para todos, es decir, en cada uno de los estudios, la técnica que mejor se comporta siempre depende de los datos y por ende al tipo de estudio que se esta realizando, entonces surge así el interés de saber cual de ambas técnicas se comportará mas eficientemente en el pronóstico de morosidad en el Colegio de Ingenieros CD Lambayeque. Entonces, para poder determinar que técnica es la mejor, se evaluó la exactitud, sensibilidad, especificidad y la curva ROC, y se empleó el desarrollo de ETL para la extracción de los datos de los colegiados y sus pagos respetivos por cada mes, y se tomaron los datos mas representativos después de varios análisis, todo esto para que sean correctamente procesados por las técnicas, y así obtener resultados apropiados, para que la toma de decisiones sea lo más certera posible. Al realizar todo el proceso del método propuesto se obtuvieron como resultados que ambas técnicas aplicadas al conjunto de datos asignados son muy parecidos, pero con una pequeña mejora en la técnica de Decision Tree contra Adaboost, con 86.73% contra 86.71%, además cabe destacar que Decision Tree tardo en promedio 0.70 segundos, contra 2.49 segundos de Adaboost. Por lo tanto, se llegó a la conclusión de que haciendo uso de la herramienta R donde fueron Implementados ambas técnicas, se demostró de que Decisión Tree ganó por poco a Adaboost en Accuracy.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSIncumplimiento de PagoMorosidadAdaptive BoostingAdaboostArbol de DecisiónC5.0Aprendizaje Automáticohttps://purl.org/pe-repo/ocde/ford#2.02.04Análisis comparativo de Adaptive Boosting y Decision Tree para predecir la morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayequeinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas41639565https://orcid.org/0000-0002-0007-092876399476612076Mejía Cabrera, Heber IvánRamos Moscol, Mario FernandoTuesta Monteza, Victor alexcihttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALSilva Parraguez Máximo Gabriel.pdfSilva Parraguez Máximo Gabriel.pdfapplication/pdf3748308https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/1/Silva%20Parraguez%20M%c3%a1ximo%20Gabriel.pdfda2037f5c85799cea4d60e49696f5894MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/2/license_rdf3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTSilva Parraguez Máximo Gabriel.pdf.txtSilva Parraguez Máximo Gabriel.pdf.txtExtracted texttext/plain391072https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/4/Silva%20Parraguez%20M%c3%a1ximo%20Gabriel.pdf.txtecba179fb485a6c22a83b52479323c9eMD54THUMBNAILSilva Parraguez Máximo Gabriel.pdf.jpgSilva Parraguez Máximo Gabriel.pdf.jpgGenerated Thumbnailimage/jpeg10911https://repositorio.uss.edu.pe/bitstream/20.500.12802/9149/5/Silva%20Parraguez%20M%c3%a1ximo%20Gabriel.pdf.jpg8543c2d21ac8c1cb9c25c488261e9f08MD5520.500.12802/9149oai:repositorio.uss.edu.pe:20.500.12802/91492022-02-23 03:03:28.697Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.02468 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).