Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial

Descripción del Articulo

El presente trabajo tiene como objetivo principal generar un algoritmo de detección de fruta en mal estado y así permita el control de calidad; para ello se utilizarán técnicas de procesamiento digital de imágenes tales como histogramas, uso de operadores morfológicos, cambios a otros espacios de co...

Descripción completa

Detalles Bibliográficos
Autor: La Madrid Távara, Luis Eduardo
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional Pedro Ruiz Gallo
Repositorio:UNPRG-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unprg.edu.pe:20.500.12893/4737
Enlace del recurso:https://hdl.handle.net/20.500.12893/4737
Nivel de acceso:acceso abierto
Materia:Imágenes Bidimensionales
Histogramas
Visión por el computador
http://purl.org/pe-repo/ocde/ford#2.02.00
id UPRG_eb3508292a2d39287fb700479b17bc66
oai_identifier_str oai:repositorio.unprg.edu.pe:20.500.12893/4737
network_acronym_str UPRG
network_name_str UNPRG-Institucional
repository_id_str 9404
dc.title.es_PE.fl_str_mv Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
title Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
spellingShingle Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
La Madrid Távara, Luis Eduardo
Imágenes Bidimensionales
Histogramas
Visión por el computador
http://purl.org/pe-repo/ocde/ford#2.02.00
title_short Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
title_full Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
title_fullStr Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
title_full_unstemmed Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
title_sort Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial
author La Madrid Távara, Luis Eduardo
author_facet La Madrid Távara, Luis Eduardo
author_role author
dc.contributor.advisor.fl_str_mv Oblitas Vera, Carlos Leonardo
dc.contributor.author.fl_str_mv La Madrid Távara, Luis Eduardo
dc.subject.es_PE.fl_str_mv Imágenes Bidimensionales
Histogramas
Visión por el computador
topic Imágenes Bidimensionales
Histogramas
Visión por el computador
http://purl.org/pe-repo/ocde/ford#2.02.00
dc.subject.ocde.es_PE.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.00
description El presente trabajo tiene como objetivo principal generar un algoritmo de detección de fruta en mal estado y así permita el control de calidad; para ello se utilizarán técnicas de procesamiento digital de imágenes tales como histogramas, uso de operadores morfológicos, cambios a otros espacios de color entre otras. El estudio de la investigación se basó en un programa realizado con MATLAB que simuló a partir de imágenes de entrada, donde se describieron una serie de pasos basados en procedimientos de procesamiento digital de imágenes que determinaron que la fruta a analizar estaba en buen estado o no, procurando determinar qué tipo de defecto se detecta. En este trabajo de investigación, en el capítulo 2 hizo referencia a la descripción de las técnicas de procesamiento digital de imágenes, así como técnicas de modelado geométrico y procesos de conocimiento. Mientras que en el capítulo 3 hace referencia a la descripción del sistema donde principalmente la imagen es convertida a una matriz de formato uint8 a formato double, donde se realizó operaciones matemáticas para separar el melocotón del fondo; posteriormente la imagen segmentada pasó a un detector de contornos con el objetivo de obtener un valor que resultó decisorio y así determinar si presenta algún defecto. En el capítulo 4 se mostró los resultados y observaciones obtenidos de las muestras de diversos melocotones, identificados por defectos como picoteados, pulpa visible y golpe; de las cuales se sometieron 100 imágenes analizadas, 11 fallos han sido por este tipo de clasificación defectuosa y se ha acertado un 89%, donde dicho resultado muestra un porcentaje de acierto favorable. Finalmente se concluye que se logró implementar exitosamente algoritmos para la detección de frutos en buen o mal estado, así como la identificación de objetos extraños mediante la segmentación, detección de bordes y el análisis de histogramas obteniendo un tiempo de respuestas del algoritmo de 69.5 segundos por imagen.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-30T21:32:00Z
dc.date.available.none.fl_str_mv 2019-07-30T21:32:00Z
dc.date.issued.fl_str_mv 2019-07-30
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.es_PE.fl_str_mv https://hdl.handle.net/20.500.12893/4737
url https://hdl.handle.net/20.500.12893/4737
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.publisher.es_PE.fl_str_mv Universidad Nacional Pedro Ruiz Gallo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.none.fl_str_mv reponame:UNPRG-Institucional
instname:Universidad Nacional Pedro Ruiz Gallo
instacron:UNPRG
instname_str Universidad Nacional Pedro Ruiz Gallo
instacron_str UNPRG
institution UNPRG
reponame_str UNPRG-Institucional
collection UNPRG-Institucional
bitstream.url.fl_str_mv http://repositorio.unprg.edu.pe/bitstream/20.500.12893/4737/1/BC-TES-3470%20LA%20MADRID%20TAVARA.pdf
http://repositorio.unprg.edu.pe/bitstream/20.500.12893/4737/2/license.txt
http://repositorio.unprg.edu.pe/bitstream/20.500.12893/4737/3/BC-TES-3470%20LA%20MADRID%20TAVARA.pdf.txt
bitstream.checksum.fl_str_mv 6b3308faf03806efe8ebb747ef5b6efd
8a4605be74aa9ea9d79846c1fba20a33
df672bf8880eecff60835e980b3d3e43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNPRG
repository.mail.fl_str_mv repositorio@unprg.edu.pe
_version_ 1817893638479282176
spelling Oblitas Vera, Carlos LeonardoLa Madrid Távara, Luis Eduardo2019-07-30T21:32:00Z2019-07-30T21:32:00Z2019-07-30https://hdl.handle.net/20.500.12893/4737El presente trabajo tiene como objetivo principal generar un algoritmo de detección de fruta en mal estado y así permita el control de calidad; para ello se utilizarán técnicas de procesamiento digital de imágenes tales como histogramas, uso de operadores morfológicos, cambios a otros espacios de color entre otras. El estudio de la investigación se basó en un programa realizado con MATLAB que simuló a partir de imágenes de entrada, donde se describieron una serie de pasos basados en procedimientos de procesamiento digital de imágenes que determinaron que la fruta a analizar estaba en buen estado o no, procurando determinar qué tipo de defecto se detecta. En este trabajo de investigación, en el capítulo 2 hizo referencia a la descripción de las técnicas de procesamiento digital de imágenes, así como técnicas de modelado geométrico y procesos de conocimiento. Mientras que en el capítulo 3 hace referencia a la descripción del sistema donde principalmente la imagen es convertida a una matriz de formato uint8 a formato double, donde se realizó operaciones matemáticas para separar el melocotón del fondo; posteriormente la imagen segmentada pasó a un detector de contornos con el objetivo de obtener un valor que resultó decisorio y así determinar si presenta algún defecto. En el capítulo 4 se mostró los resultados y observaciones obtenidos de las muestras de diversos melocotones, identificados por defectos como picoteados, pulpa visible y golpe; de las cuales se sometieron 100 imágenes analizadas, 11 fallos han sido por este tipo de clasificación defectuosa y se ha acertado un 89%, donde dicho resultado muestra un porcentaje de acierto favorable. Finalmente se concluye que se logró implementar exitosamente algoritmos para la detección de frutos en buen o mal estado, así como la identificación de objetos extraños mediante la segmentación, detección de bordes y el análisis de histogramas obteniendo un tiempo de respuestas del algoritmo de 69.5 segundos por imagen.spaUniversidad Nacional Pedro Ruiz GalloPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Imágenes BidimensionalesHistogramasVisión por el computadorhttp://purl.org/pe-repo/ocde/ford#2.02.00Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificialinfo:eu-repo/semantics/bachelorThesisreponame:UNPRG-Institucionalinstname:Universidad Nacional Pedro Ruiz Galloinstacron:UNPRGSUNEDUIngeniero ElectrónicoUniversidad Nacional Pedro Ruiz Gallo. Facultad de Ciencias Físicas y MatemáticasIngeniería Electrónicahttp://purl.org/pe-repo/renati/type#tesishttp://purl.org/pe-repo/renati/level#tituloProfesional712049ORIGINALBC-TES-3470 LA MADRID TAVARA.pdfBC-TES-3470 LA MADRID TAVARA.pdfapplication/pdf2418902http://repositorio.unprg.edu.pe/bitstream/20.500.12893/4737/1/BC-TES-3470%20LA%20MADRID%20TAVARA.pdf6b3308faf03806efe8ebb747ef5b6efdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unprg.edu.pe/bitstream/20.500.12893/4737/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTBC-TES-3470 LA MADRID TAVARA.pdf.txtBC-TES-3470 LA MADRID TAVARA.pdf.txtExtracted texttext/plain153857http://repositorio.unprg.edu.pe/bitstream/20.500.12893/4737/3/BC-TES-3470%20LA%20MADRID%20TAVARA.pdf.txtdf672bf8880eecff60835e980b3d3e43MD5320.500.12893/4737oai:repositorio.unprg.edu.pe:20.500.12893/47372021-08-01 12:21:03.564Repositorio Institucional - UNPRGrepositorio@unprg.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.941906
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).