Implementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificial

Descripción del Articulo

El presente trabajo tiene como objetivo principal generar un algoritmo de detección de fruta en mal estado y así permita el control de calidad; para ello se utilizarán técnicas de procesamiento digital de imágenes tales como histogramas, uso de operadores morfológicos, cambios a otros espacios de co...

Descripción completa

Detalles Bibliográficos
Autor: La Madrid Távara, Luis Eduardo
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional Pedro Ruiz Gallo
Repositorio:UNPRG-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unprg.edu.pe:20.500.12893/4737
Enlace del recurso:https://hdl.handle.net/20.500.12893/4737
Nivel de acceso:acceso abierto
Materia:Imágenes Bidimensionales
Histogramas
Visión por el computador
http://purl.org/pe-repo/ocde/ford#2.02.00
Descripción
Sumario:El presente trabajo tiene como objetivo principal generar un algoritmo de detección de fruta en mal estado y así permita el control de calidad; para ello se utilizarán técnicas de procesamiento digital de imágenes tales como histogramas, uso de operadores morfológicos, cambios a otros espacios de color entre otras. El estudio de la investigación se basó en un programa realizado con MATLAB que simuló a partir de imágenes de entrada, donde se describieron una serie de pasos basados en procedimientos de procesamiento digital de imágenes que determinaron que la fruta a analizar estaba en buen estado o no, procurando determinar qué tipo de defecto se detecta. En este trabajo de investigación, en el capítulo 2 hizo referencia a la descripción de las técnicas de procesamiento digital de imágenes, así como técnicas de modelado geométrico y procesos de conocimiento. Mientras que en el capítulo 3 hace referencia a la descripción del sistema donde principalmente la imagen es convertida a una matriz de formato uint8 a formato double, donde se realizó operaciones matemáticas para separar el melocotón del fondo; posteriormente la imagen segmentada pasó a un detector de contornos con el objetivo de obtener un valor que resultó decisorio y así determinar si presenta algún defecto. En el capítulo 4 se mostró los resultados y observaciones obtenidos de las muestras de diversos melocotones, identificados por defectos como picoteados, pulpa visible y golpe; de las cuales se sometieron 100 imágenes analizadas, 11 fallos han sido por este tipo de clasificación defectuosa y se ha acertado un 89%, donde dicho resultado muestra un porcentaje de acierto favorable. Finalmente se concluye que se logró implementar exitosamente algoritmos para la detección de frutos en buen o mal estado, así como la identificación de objetos extraños mediante la segmentación, detección de bordes y el análisis de histogramas obteniendo un tiempo de respuestas del algoritmo de 69.5 segundos por imagen.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).