Expresión Matricial de las formas cuadráticas desarrolladas con GeoGebra
Descripción del Articulo
Este estudio explora la enseñanza y el aprendizaje de las formas cuadráticas, destacando su relevancia en campos científicos y de ingeniería. Las formas cuadráticas, representadas mediante matrices simétricas, son esenciales para modelar y resolver problemas complejos. La tecnología, particularmente...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Nacional del Santa |
| Repositorio: | UNS - Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.uns.edu.pe:20.500.14278/4901 |
| Enlace del recurso: | https://hdl.handle.net/20.500.14278/4901 |
| Nivel de acceso: | acceso abierto |
| Materia: | Formas cuadráticas GeoGebra Matrices simétricas Autovalores Autovectores https://purl.org/pe-repo/ocde/ford#5.03.00 |
| Sumario: | Este estudio explora la enseñanza y el aprendizaje de las formas cuadráticas, destacando su relevancia en campos científicos y de ingeniería. Las formas cuadráticas, representadas mediante matrices simétricas, son esenciales para modelar y resolver problemas complejos. La tecnología, particularmente el software GeoGebra, se presenta como una herramienta crucial para mejorar la comprensión de estos conceptos, al facilitar la entrada, manipulación y visualización de matrices. GeoGebra permite a los usuarios explorar cómo diferentes configuraciones de coeficientes afectan la geometría de las cuádricas, facilitando también el análisis de valores y vectores propios, así como la diagonalización de matrices. Este trabajo justifica su relevancia en la necesidad de mejorar la enseñanza de matemáticas en Perú, donde persisten métodos tradicionales que dificultan el aprendizaje. Diversos estudios indican que GeoGebra ha demostrado mejorar la comprensión conceptual y el rendimiento académico en matemáticas. En este contexto, la investigación se enfoca en Nuevo Chimbote, donde se observan bajos niveles de éxito en las universidades. El estudio busca demostrar que la integración de GeoGebra puede transformar el aprendizaje de conceptos matemáticos complejos, proporcionando una educación más efectiva y dinámica, reforzando la conexión entre álgebra y geometría, tal como lo señalan Artin (2018), Hohenwarter y Fuchs (2020), y Johnson y Wichern (2019) |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).