Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas

Descripción del Articulo

La detección de embarcaciones es un tema prioritario que ayuda a combatir la pesca ilegal, en búsqueda y rescate de navíos perdidos, entre otras actividades prioritarias en el mar Actualmente el uso técnicas de Aprendizaje Profundo en la detección de objetos está dando buenos resultados sobre imágen...

Descripción completa

Detalles Bibliográficos
Autor: Nina Choquehuayta, Wilder
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Nacional de San Agustín
Repositorio:UNSA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsa.edu.pe:20.500.12773/12247
Enlace del recurso:http://hdl.handle.net/20.500.12773/12247
Nivel de acceso:acceso abierto
Materia:Detección de Objetos
Detección de Barcos
Redes Neuronales Convolucionales
Imágenes Satelitales
https://purl.org/pe-repo/ocde/ford#2.02.04
id UNSA_eefb1e811c5e02b03df3992ec74c10b6
oai_identifier_str oai:repositorio.unsa.edu.pe:20.500.12773/12247
network_acronym_str UNSA
network_name_str UNSA-Institucional
repository_id_str 4847
dc.title.es_PE.fl_str_mv Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
title Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
spellingShingle Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
Nina Choquehuayta, Wilder
Detección de Objetos
Detección de Barcos
Redes Neuronales Convolucionales
Imágenes Satelitales
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
title_full Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
title_fullStr Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
title_full_unstemmed Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
title_sort Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticas
author Nina Choquehuayta, Wilder
author_facet Nina Choquehuayta, Wilder
author_role author
dc.contributor.advisor.fl_str_mv Castro Gutierrez, Eveling Gloria
dc.contributor.author.fl_str_mv Nina Choquehuayta, Wilder
dc.subject.es_PE.fl_str_mv Detección de Objetos
Detección de Barcos
Redes Neuronales Convolucionales
Imágenes Satelitales
topic Detección de Objetos
Detección de Barcos
Redes Neuronales Convolucionales
Imágenes Satelitales
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description La detección de embarcaciones es un tema prioritario que ayuda a combatir la pesca ilegal, en búsqueda y rescate de navíos perdidos, entre otras actividades prioritarias en el mar Actualmente el uso técnicas de Aprendizaje Profundo en la detección de objetos está dando buenos resultados sobre imágenes satelitales. En la presente investigación se presenta un modelo que permite detectar embarcaciones dentro de las 100 millas del borde costero del Perú, utilizando técnicas de Aprendizaje Profundo e Imágenes Satelitales. Se realizó una comparación entre la última versión de You Only Look Once (YOLO) y You Only Look Twice (YOLT) para resolver el problema de detectar objetos pequeños (barcos) en el mar sobre imágenes satelitales ópticas debido a la gran diversidad de embarcaciones que existen en el Perú. Se trabajó con dos conjuntos de datos: High-Resolution Ship Collection (HRSC) y Mini Ship Data Set (MSDS), este último fue construido a partir de embarcaciones provenientes del borde costero del Perú. El ancho promedio de los objetos para HRSC y MSDS son 150 y 50 píxeles respectivamente. Los resultados mostraron que YOLT es bueno solo para objetos pequeños con 76,06% de Average Precision (AP), mientras que YOLO alcanzó 69,80 % en el conjunto de datos HRSC. Además, en el caso del conjunto de datos HRSC donde tienen objetos de diferentes tamaños, YOLT obtuvo un 40% de AP contra 75% de YOLO
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-05-20T20:12:46Z
dc.date.available.none.fl_str_mv 2021-05-20T20:12:46Z
dc.date.issued.fl_str_mv 2020
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12773/12247
url http://hdl.handle.net/20.500.12773/12247
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional de San Agustín de Arequipa
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional de San Agustín de Arequipa
Repositorio Institucional - UNSA
dc.source.none.fl_str_mv reponame:UNSA-Institucional
instname:Universidad Nacional de San Agustín
instacron:UNSA
instname_str Universidad Nacional de San Agustín
instacron_str UNSA
institution UNSA
reponame_str UNSA-Institucional
collection UNSA-Institucional
bitstream.url.fl_str_mv https://repositorio.unsa.edu.pe/bitstreams/1c89bc04-0c2f-4312-bbf7-e365e8057a6a/download
https://repositorio.unsa.edu.pe/bitstreams/ddaf0ea9-62e0-47a0-bf09-87797516d2ae/download
https://repositorio.unsa.edu.pe/bitstreams/48eeb832-1bcd-4a5c-afac-573ad343c701/download
bitstream.checksum.fl_str_mv 0c6569a830fb58c3d9422b6041490ce4
c0ac095397454e5877a15e5794592311
c52066b9c50a8f86be96c82978636682
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UNSA
repository.mail.fl_str_mv repositorio@unsa.edu.pe
_version_ 1828762797369982976
spelling Castro Gutierrez, Eveling GloriaNina Choquehuayta, Wilder2021-05-20T20:12:46Z2021-05-20T20:12:46Z2020La detección de embarcaciones es un tema prioritario que ayuda a combatir la pesca ilegal, en búsqueda y rescate de navíos perdidos, entre otras actividades prioritarias en el mar Actualmente el uso técnicas de Aprendizaje Profundo en la detección de objetos está dando buenos resultados sobre imágenes satelitales. En la presente investigación se presenta un modelo que permite detectar embarcaciones dentro de las 100 millas del borde costero del Perú, utilizando técnicas de Aprendizaje Profundo e Imágenes Satelitales. Se realizó una comparación entre la última versión de You Only Look Once (YOLO) y You Only Look Twice (YOLT) para resolver el problema de detectar objetos pequeños (barcos) en el mar sobre imágenes satelitales ópticas debido a la gran diversidad de embarcaciones que existen en el Perú. Se trabajó con dos conjuntos de datos: High-Resolution Ship Collection (HRSC) y Mini Ship Data Set (MSDS), este último fue construido a partir de embarcaciones provenientes del borde costero del Perú. El ancho promedio de los objetos para HRSC y MSDS son 150 y 50 píxeles respectivamente. Los resultados mostraron que YOLT es bueno solo para objetos pequeños con 76,06% de Average Precision (AP), mientras que YOLO alcanzó 69,80 % en el conjunto de datos HRSC. Además, en el caso del conjunto de datos HRSC donde tienen objetos de diferentes tamaños, YOLT obtuvo un 40% de AP contra 75% de YOLOapplication/pdfhttp://hdl.handle.net/20.500.12773/12247spaUniversidad Nacional de San Agustín de ArequipaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de San Agustín de ArequipaRepositorio Institucional - UNSAreponame:UNSA-Institucionalinstname:Universidad Nacional de San Agustíninstacron:UNSADetección de ObjetosDetección de BarcosRedes Neuronales ConvolucionalesImágenes Satelitaleshttps://purl.org/pe-repo/ocde/ford#2.02.04Detección de embarcaciones utilizando Deep Learning e imágenes satelitales ópticasinfo:eu-repo/semantics/bachelorThesisSUNEDU29695284https://orcid.org/0000-0002-0203-041X46107976612076Silva Fernandez, Jesus MartinCastro Gutierrez, Eveling GloriaCornejo Aparicio, Victor Manuelhttp://purl.org/pe-repo/renati/level#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisIngeniería de SistemasUniversidad Nacional de San Agustín de Arequipa.Facultad de Ingeniería de Producción y ServiciosIngeniero de SistemasTEXTISnichw.pdf.txtISnichw.pdf.txtExtracted texttext/plain182195https://repositorio.unsa.edu.pe/bitstreams/1c89bc04-0c2f-4312-bbf7-e365e8057a6a/download0c6569a830fb58c3d9422b6041490ce4MD53ORIGINALISnichw.pdfISnichw.pdfapplication/pdf4038827https://repositorio.unsa.edu.pe/bitstreams/ddaf0ea9-62e0-47a0-bf09-87797516d2ae/downloadc0ac095397454e5877a15e5794592311MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unsa.edu.pe/bitstreams/48eeb832-1bcd-4a5c-afac-573ad343c701/downloadc52066b9c50a8f86be96c82978636682MD5220.500.12773/12247oai:repositorio.unsa.edu.pe:20.500.12773/122472022-05-18 01:20:48.662http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.unsa.edu.peRepositorio Institucional UNSArepositorio@unsa.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.802008
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).