Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks
Descripción del Articulo
In modern industry, electric motors are essential components in a wide range of applications, from manufacturing production to transportation and power generation. These motors are critical in industrial machinery and equipment, and their proper functioning is crucial for maintaining operational eff...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de San Agustín |
| Repositorio: | UNSA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.unsa.edu.pe:20.500.12773/20268 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12773/20268 |
| Nivel de acceso: | acceso abierto |
| Materia: | Non-Drive End Real Time Detection Low-Cost https://purl.org/pe-repo/ocde/ford#2.11.02 |
| id |
UNSA_e39cd1c71390f4126834801cb4a53cea |
|---|---|
| oai_identifier_str |
oai:repositorio.unsa.edu.pe:20.500.12773/20268 |
| network_acronym_str |
UNSA |
| network_name_str |
UNSA-Institucional |
| repository_id_str |
4847 |
| spelling |
Talavera Suarez, Jesus Jose FortunatoBorda Aliaga, Brandon GonzaloFlorez Andia, Luis2025-06-19T17:16:22Z2025-06-19T17:16:22Z2025In modern industry, electric motors are essential components in a wide range of applications, from manufacturing production to transportation and power generation. These motors are critical in industrial machinery and equipment, and their proper functioning is crucial for maintaining operational efficiency and productivity. However, motors are susceptible to various types of faults that can be costly in terms of downtime, production loss, and repair expenses. Early detection of these faults is essential to prevent unscheduled shutdowns, reduce maintenance costs, and avoid workplace accidents. This paper proposes a low-cost, real-time fault detection system for motors placed on the Non-Drive End based on neural networks, aimed at improving operational efficiency and reducing maintenance costs in the industry.application/pdfhttps://hdl.handle.net/20.500.12773/20268spaUniversidad Nacional de San Agustín de ArequipaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de San Agustín de ArequipaRepositorio Institucional - UNSAreponame:UNSA-Institucionalinstname:Universidad Nacional de San Agustíninstacron:UNSANon-Drive EndReal Time DetectionLow-Costhttps://purl.org/pe-repo/ocde/ford#2.11.02Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networksinfo:eu-repo/semantics/bachelorThesisSUNEDU29272155https://orcid.org/0000-0002-8076-51987000444972252335712026713046Caceres Cabana, EdgarCutipa Luque, Juan CarlosTalavera Suarez, Jesus Jose Fortunatohttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisIngeniería ElectrónicaIngeniería MecánicaUniversidad Nacional de San Agustín de Arequipa.Facultad de Ingeniería de Producción y ServiciosIngeniero ElectrónicoIngeniero MecánicoTesis Formato ArtículoORIGINALTesis.pdfapplication/pdf1118363https://repositorio.unsa.edu.pe/bitstreams/f493f60c-06e8-4c3c-88bc-22376206076c/download084f30c67a78524a84d1c5862d7f33a6MD51Reporte de Similitud.pdfapplication/pdf1398821https://repositorio.unsa.edu.pe/bitstreams/c3604e6f-2e8c-4c80-b1a1-36eddf9881c8/download0d5fcb0b6c56ec820557589b3252072aMD52Autorización de Publicación Digital 1.pdfapplication/pdf1603240https://repositorio.unsa.edu.pe/bitstreams/75ff79b7-6356-4506-97c2-31fe2ccf8b51/downloada36a18f3ecb6ba3ad9ec086e73c769dbMD53Autorización de Publicación Digital 2.pdfapplication/pdf40738https://repositorio.unsa.edu.pe/bitstreams/49f052e4-fa6b-47bf-81b6-444058d78eb0/download3491eee59fd8290314fc351ff1c1e1d0MD5420.500.12773/20268oai:repositorio.unsa.edu.pe:20.500.12773/202682025-10-07 14:31:05.174http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.unsa.edu.peRepositorio Institucional UNSAvridi.gestioninformacion@unsa.edu.pe |
| dc.title.es_PE.fl_str_mv |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| title |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| spellingShingle |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks Borda Aliaga, Brandon Gonzalo Non-Drive End Real Time Detection Low-Cost https://purl.org/pe-repo/ocde/ford#2.11.02 |
| title_short |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| title_full |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| title_fullStr |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| title_full_unstemmed |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| title_sort |
Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks |
| author |
Borda Aliaga, Brandon Gonzalo |
| author_facet |
Borda Aliaga, Brandon Gonzalo Florez Andia, Luis |
| author_role |
author |
| author2 |
Florez Andia, Luis |
| author2_role |
author |
| dc.contributor.advisor.fl_str_mv |
Talavera Suarez, Jesus Jose Fortunato |
| dc.contributor.author.fl_str_mv |
Borda Aliaga, Brandon Gonzalo Florez Andia, Luis |
| dc.subject.es_PE.fl_str_mv |
Non-Drive End Real Time Detection Low-Cost |
| topic |
Non-Drive End Real Time Detection Low-Cost https://purl.org/pe-repo/ocde/ford#2.11.02 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.02 |
| description |
In modern industry, electric motors are essential components in a wide range of applications, from manufacturing production to transportation and power generation. These motors are critical in industrial machinery and equipment, and their proper functioning is crucial for maintaining operational efficiency and productivity. However, motors are susceptible to various types of faults that can be costly in terms of downtime, production loss, and repair expenses. Early detection of these faults is essential to prevent unscheduled shutdowns, reduce maintenance costs, and avoid workplace accidents. This paper proposes a low-cost, real-time fault detection system for motors placed on the Non-Drive End based on neural networks, aimed at improving operational efficiency and reducing maintenance costs in the industry. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-06-19T17:16:22Z |
| dc.date.available.none.fl_str_mv |
2025-06-19T17:16:22Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12773/20268 |
| url |
https://hdl.handle.net/20.500.12773/20268 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Nacional de San Agustín de Arequipa |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad Nacional de San Agustín de Arequipa Repositorio Institucional - UNSA |
| dc.source.none.fl_str_mv |
reponame:UNSA-Institucional instname:Universidad Nacional de San Agustín instacron:UNSA |
| instname_str |
Universidad Nacional de San Agustín |
| instacron_str |
UNSA |
| institution |
UNSA |
| reponame_str |
UNSA-Institucional |
| collection |
UNSA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.unsa.edu.pe/bitstreams/f493f60c-06e8-4c3c-88bc-22376206076c/download https://repositorio.unsa.edu.pe/bitstreams/c3604e6f-2e8c-4c80-b1a1-36eddf9881c8/download https://repositorio.unsa.edu.pe/bitstreams/75ff79b7-6356-4506-97c2-31fe2ccf8b51/download https://repositorio.unsa.edu.pe/bitstreams/49f052e4-fa6b-47bf-81b6-444058d78eb0/download |
| bitstream.checksum.fl_str_mv |
084f30c67a78524a84d1c5862d7f33a6 0d5fcb0b6c56ec820557589b3252072a a36a18f3ecb6ba3ad9ec086e73c769db 3491eee59fd8290314fc351ff1c1e1d0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UNSA |
| repository.mail.fl_str_mv |
vridi.gestioninformacion@unsa.edu.pe |
| _version_ |
1850039623232782336 |
| score |
13.438731 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).