Real-Time Low-Cost Fault Detection System Placed in Non-Drive End of Motors Based on Neural Networks

Descripción del Articulo

In modern industry, electric motors are essential components in a wide range of applications, from manufacturing production to transportation and power generation. These motors are critical in industrial machinery and equipment, and their proper functioning is crucial for maintaining operational eff...

Descripción completa

Detalles Bibliográficos
Autores: Borda Aliaga, Brandon Gonzalo, Florez Andia, Luis
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional de San Agustín
Repositorio:UNSA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsa.edu.pe:20.500.12773/20268
Enlace del recurso:https://hdl.handle.net/20.500.12773/20268
Nivel de acceso:acceso abierto
Materia:Non-Drive End
Real Time Detection
Low-Cost
https://purl.org/pe-repo/ocde/ford#2.11.02
Descripción
Sumario:In modern industry, electric motors are essential components in a wide range of applications, from manufacturing production to transportation and power generation. These motors are critical in industrial machinery and equipment, and their proper functioning is crucial for maintaining operational efficiency and productivity. However, motors are susceptible to various types of faults that can be costly in terms of downtime, production loss, and repair expenses. Early detection of these faults is essential to prevent unscheduled shutdowns, reduce maintenance costs, and avoid workplace accidents. This paper proposes a low-cost, real-time fault detection system for motors placed on the Non-Drive End based on neural networks, aimed at improving operational efficiency and reducing maintenance costs in the industry.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).