Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder

Descripción del Articulo

Aplica el teorema del punto fijo de Schauder (1930) que se puede considerar como una generalización del teorema de Brouwer (1912) a dimensiones infinitas es el resultado fundamental que utiliza para resolver el problema de existencia de solución débil para los problemas no lineales.
Detalles Bibliográficos
Autor: Chávez Machado, Elfren
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/7225
Enlace del recurso:https://hdl.handle.net/20.500.12672/7225
Nivel de acceso:acceso abierto
Materia:Teoría del punto fijo
Ecuaciones diferenciales elípticas - Soluciones numéricas
Análisis funcional
https://purl.org/pe-repo/ocde/ford#1.01.01
id UNMS_d469b858c00810524727dc6455b80a5e
oai_identifier_str oai:cybertesis.unmsm.edu.pe:20.500.12672/7225
network_acronym_str UNMS
network_name_str UNMSM-Tesis
repository_id_str 410
dc.title.none.fl_str_mv Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
title Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
spellingShingle Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
Chávez Machado, Elfren
Teoría del punto fijo
Ecuaciones diferenciales elípticas - Soluciones numéricas
Análisis funcional
https://purl.org/pe-repo/ocde/ford#1.01.01
title_short Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
title_full Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
title_fullStr Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
title_full_unstemmed Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
title_sort Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
author Chávez Machado, Elfren
author_facet Chávez Machado, Elfren
author_role author
dc.contributor.advisor.fl_str_mv Cabanillas Lapa, Eugenio
dc.contributor.author.fl_str_mv Chávez Machado, Elfren
dc.subject.none.fl_str_mv Teoría del punto fijo
Ecuaciones diferenciales elípticas - Soluciones numéricas
Análisis funcional
topic Teoría del punto fijo
Ecuaciones diferenciales elípticas - Soluciones numéricas
Análisis funcional
https://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.01
description Aplica el teorema del punto fijo de Schauder (1930) que se puede considerar como una generalización del teorema de Brouwer (1912) a dimensiones infinitas es el resultado fundamental que utiliza para resolver el problema de existencia de solución débil para los problemas no lineales.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2018-04-18T20:05:25Z
dc.date.available.none.fl_str_mv 2018-04-18T20:05:25Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.citation.none.fl_str_mv Chávez, E. (2017). Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12672/7225
identifier_str_mv Chávez, E. (2017). Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.
url https://hdl.handle.net/20.500.12672/7225
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Repositorio de Tesis - UNMSM
Universidad Nacional Mayor de San Marcos
reponame:UNMSM-Tesis
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str UNMSM-Tesis
collection UNMSM-Tesis
bitstream.url.fl_str_mv https://cybertesis.unmsm.edu.pe/bitstreams/b27c1d73-d33e-4d4d-96a0-d806207782db/download
https://cybertesis.unmsm.edu.pe/bitstreams/3ace7724-ab5f-41be-a855-2eb7865e7231/download
https://cybertesis.unmsm.edu.pe/bitstreams/e96597aa-678e-4b43-a173-d5d671715e2f/download
https://cybertesis.unmsm.edu.pe/bitstreams/29391763-6f3a-4215-b446-58f9720a26a9/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
71d759d1ccea0689463404cded98604f
bbc878d044046f9dbdf7bf14049dd73f
2080b2694178ebf4df64ece42dbdc7c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Cybertesis UNMSM
repository.mail.fl_str_mv cybertesis@unmsm.edu.pe
_version_ 1846617934702575616
spelling Cabanillas Lapa, EugenioChávez Machado, Elfren2018-04-18T20:05:25Z2018-04-18T20:05:25Z2017Chávez, E. (2017). Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/7225Aplica el teorema del punto fijo de Schauder (1930) que se puede considerar como una generalización del teorema de Brouwer (1912) a dimensiones infinitas es el resultado fundamental que utiliza para resolver el problema de existencia de solución débil para los problemas no lineales.TesisspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio de Tesis - UNMSMUniversidad Nacional Mayor de San Marcosreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMTeoría del punto fijoEcuaciones diferenciales elípticas - Soluciones numéricasAnálisis funcionalhttps://purl.org/pe-repo/ocde/ford#1.01.01Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauderinfo:eu-repo/semantics/masterThesisSUNEDUMagíster en Matemática PuraUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Unidad de PosgradoMaestriaCiencias Matemáticas06445518https://orcid.org/0000-0002-8941-4394Contreras Chamorro, Pedro CelsoPérez Salvatierra, AlfonsoAliaga Llanos, Adrián GuillermoZegarra Garay, María Natividadhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis07699566064457390765991009206994LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/b27c1d73-d33e-4d4d-96a0-d806207782db/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALChavez_me.pdfChavez_me.pdfapplication/pdf1666413https://cybertesis.unmsm.edu.pe/bitstreams/3ace7724-ab5f-41be-a855-2eb7865e7231/download71d759d1ccea0689463404cded98604fMD53TEXTChavez_me.pdf.txtChavez_me.pdf.txtExtracted texttext/plain95877https://cybertesis.unmsm.edu.pe/bitstreams/e96597aa-678e-4b43-a173-d5d671715e2f/downloadbbc878d044046f9dbdf7bf14049dd73fMD56THUMBNAILChavez_me.pdf.jpgChavez_me.pdf.jpgGenerated Thumbnailimage/jpeg13529https://cybertesis.unmsm.edu.pe/bitstreams/29391763-6f3a-4215-b446-58f9720a26a9/download2080b2694178ebf4df64ece42dbdc7c2MD5720.500.12672/7225oai:cybertesis.unmsm.edu.pe:20.500.12672/72252024-08-16 00:34:26.334https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.425424
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).