Existencia de soluciones débiles de un sistema elíptico no lineal vía el teorema de Schauder
Descripción del Articulo
Aplica el teorema del punto fijo de Schauder (1930) que se puede considerar como una generalización del teorema de Brouwer (1912) a dimensiones infinitas es el resultado fundamental que utiliza para resolver el problema de existencia de solución débil para los problemas no lineales.
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2017 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/7225 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/7225 |
Nivel de acceso: | acceso abierto |
Materia: | Teoría del punto fijo Ecuaciones diferenciales elípticas - Soluciones numéricas Análisis funcional https://purl.org/pe-repo/ocde/ford#1.01.01 |
Sumario: | Aplica el teorema del punto fijo de Schauder (1930) que se puede considerar como una generalización del teorema de Brouwer (1912) a dimensiones infinitas es el resultado fundamental que utiliza para resolver el problema de existencia de solución débil para los problemas no lineales. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).