Una introducción a las álgebras geométricas euclideanas tridimensional

Descripción del Articulo

Presenta el álgebra geométrica AG(3) como un R−subespacio vectorial del anillo de polinomios provisto de un producto de polinomios modificado por la condición de Dirac. El álgebra AG(3) de elementos multivectoriales se descompone como suma directa de sub- álgebras asociativas los cuales se observa q...

Descripción completa

Detalles Bibliográficos
Autor: Alcántara Michuy, Carlos Alberto
Formato: tesis de grado
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/11007
Enlace del recurso:https://hdl.handle.net/20.500.12672/11007
Nivel de acceso:acceso abierto
Materia:Álgebra
Geometría algebraica
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Presenta el álgebra geométrica AG(3) como un R−subespacio vectorial del anillo de polinomios provisto de un producto de polinomios modificado por la condición de Dirac. El álgebra AG(3) de elementos multivectoriales se descompone como suma directa de sub- álgebras asociativas los cuales se observa que poseen isomorfismos con las álgebras ya conocidas , R R3, C y los cuaterniones de Hamilton H . Las aplicaciones del AG(3) son diversas, para las áreas de matemáticas como la física, también se observa que las rotaciones y reflexiones de vectores sobre un plano y su proyección sobre el mismo se presentan de una forma más compacta en el AG(3). A la vez el álgebra geométrica presenta una versión más generalizada y compacta de la derivada y los conceptos clásicos del cálculo como es la gradiente, el rotacional y la divergencia que se estudian por separados, serán unificadas con el concepto de la derivada geométrica, como se muestran en los teoremas de Stokes y la divergencia.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).