Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray

Descripción del Articulo

Actually the main cause of decease are produce by cancer illness. They can afect a many organs sucha as pancreas, breast, cervix, prostate and others, and breast cancer has high number of cases and this kind of illness has state or level of developing as metastasis, it spreads malign cells for neigh...

Descripción completa

Detalles Bibliográficos
Autor: Calderón Niquín, Marks Arturo
Formato: tesis de grado
Fecha de Publicación:2012
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/4887
Enlace del recurso:https://hdl.handle.net/20.500.14414/4887
Nivel de acceso:acceso abierto
Materia:Microarray, Metástasis de cáncer
Descripción
Sumario:Actually the main cause of decease are produce by cancer illness. They can afect a many organs sucha as pancreas, breast, cervix, prostate and others, and breast cancer has high number of cases and this kind of illness has state or level of developing as metastasis, it spreads malign cells for neighbour organs then it produce the highest rate of death. Exists several diagnostic test and one of that is analysis of microarrays is used a different algorithms of machine learning. Support Vector Machine-SVM has obtained a good performance to binary classification and complement of it is a multiple kernel learning-MKL. In this thesis our proposal a new method, it uses a local(datadependent) and nonlinear combination with different kernels. We call it as localized nonlinear multiple kernel learning (LNLMKL). In our experiments for binary microarray classification, different kernels were used in SVM and different kernels combinations. Finally, we report the results of these experiments using eight high-dimensional microarray datasets demostrating that our proposal have performanced better than other methods analyzed.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).