Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray
Descripción del Articulo
Actually the main cause of decease are produce by cancer illness. They can afect a many organs sucha as pancreas, breast, cervix, prostate and others, and breast cancer has high number of cases and this kind of illness has state or level of developing as metastasis, it spreads malign cells for neigh...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2012 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | UNITRU-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:dspace.unitru.edu.pe:20.500.14414/4887 |
| Enlace del recurso: | https://hdl.handle.net/20.500.14414/4887 |
| Nivel de acceso: | acceso abierto |
| Materia: | Microarray, Metástasis de cáncer |
| id |
UNIT_a5490637ec7634f1c00ca8d590871709 |
|---|---|
| oai_identifier_str |
oai:dspace.unitru.edu.pe:20.500.14414/4887 |
| network_acronym_str |
UNIT |
| network_name_str |
UNITRU-Tesis |
| repository_id_str |
4801 |
| dc.title.es_ES.fl_str_mv |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| title |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| spellingShingle |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray Calderón Niquín, Marks Arturo Microarray, Metástasis de cáncer |
| title_short |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| title_full |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| title_fullStr |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| title_full_unstemmed |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| title_sort |
Detección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarray |
| author |
Calderón Niquín, Marks Arturo |
| author_facet |
Calderón Niquín, Marks Arturo |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Peralta Luján, José Luis |
| dc.contributor.author.fl_str_mv |
Calderón Niquín, Marks Arturo |
| dc.subject.es_ES.fl_str_mv |
Microarray, Metástasis de cáncer |
| topic |
Microarray, Metástasis de cáncer |
| description |
Actually the main cause of decease are produce by cancer illness. They can afect a many organs sucha as pancreas, breast, cervix, prostate and others, and breast cancer has high number of cases and this kind of illness has state or level of developing as metastasis, it spreads malign cells for neighbour organs then it produce the highest rate of death. Exists several diagnostic test and one of that is analysis of microarrays is used a different algorithms of machine learning. Support Vector Machine-SVM has obtained a good performance to binary classification and complement of it is a multiple kernel learning-MKL. In this thesis our proposal a new method, it uses a local(datadependent) and nonlinear combination with different kernels. We call it as localized nonlinear multiple kernel learning (LNLMKL). In our experiments for binary microarray classification, different kernels were used in SVM and different kernels combinations. Finally, we report the results of these experiments using eight high-dimensional microarray datasets demostrating that our proposal have performanced better than other methods analyzed. |
| publishDate |
2012 |
| dc.date.accessioned.none.fl_str_mv |
11/18/2016 12:30 |
| dc.date.available.none.fl_str_mv |
11/18/2016 12:30 |
| dc.date.issued.fl_str_mv |
2012 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.14414/4887 |
| url |
https://hdl.handle.net/20.500.14414/4887 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.es_ES.fl_str_mv |
Universidad Nacional de Trujillo Repositorio institucional - UNITRU |
| dc.source.none.fl_str_mv |
reponame:UNITRU-Tesis instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
UNITRU-Tesis |
| collection |
UNITRU-Tesis |
| bitstream.url.fl_str_mv |
https://dspace.unitru.edu.pe/bitstreams/887d2859-32ef-44df-a978-d9545bfacbd4/download https://dspace.unitru.edu.pe/bitstreams/0e6e402b-b67e-4b49-8569-07ab1be2ae9f/download |
| bitstream.checksum.fl_str_mv |
672a84243426c8d99ca21fd02e65179b 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional - UNITRU |
| repository.mail.fl_str_mv |
repositorios@unitru.edu.pe |
| _version_ |
1807289918125244416 |
| spelling |
Peralta Luján, José LuisCalderón Niquín, Marks Arturo11/18/2016 12:3011/18/2016 12:302012https://hdl.handle.net/20.500.14414/4887Actually the main cause of decease are produce by cancer illness. They can afect a many organs sucha as pancreas, breast, cervix, prostate and others, and breast cancer has high number of cases and this kind of illness has state or level of developing as metastasis, it spreads malign cells for neighbour organs then it produce the highest rate of death. Exists several diagnostic test and one of that is analysis of microarrays is used a different algorithms of machine learning. Support Vector Machine-SVM has obtained a good performance to binary classification and complement of it is a multiple kernel learning-MKL. In this thesis our proposal a new method, it uses a local(datadependent) and nonlinear combination with different kernels. We call it as localized nonlinear multiple kernel learning (LNLMKL). In our experiments for binary microarray classification, different kernels were used in SVM and different kernels combinations. Finally, we report the results of these experiments using eight high-dimensional microarray datasets demostrating that our proposal have performanced better than other methods analyzed.En la actualidad la principal causa de muerte por enfermedad es el cáncer. Ella puede afectar a distintos organos como páncreas, mama, cuello uterino, prostata entre otros, y el cáncer mamario presenta mayor número de casos y esta enfermedad presenta estados o fases de desarrollo siendo una de ellas la metástasis que es la proliferación de células cancerigenas a órganos cercanos al del origen y causante de un gran porcentaje de muertes. Para su diagnóstico existen diferentes pruebas y una de ellas es el análisis de microarrays que emplea diferentes algoritmos de aprendizaje de máquinas. Máquinas de soportec vectorial (Support Vector Machine-SVM) presenetan una mejor performance en clasificación binaria. Un complemento de mejora a SVM es aprendizaje de múltiples kernels (Multiple Kernel Learning-MKL) que combina diferentes kernels de forma lineal, no lineal o local, en vez de uno solo. En este trabajo proponemos un nuevo método de MKL, utiliza la combinación local (dependiente de los datos) y no lineal de diferentes kernels. A esta propuesta la llamamos aprendizaje localizado no lineal de múltiples kernels (Localized Nonlinear Multiple Kernel Learning - LNLMKL). Evaluamos el desempeño de nuestra propuesta con una SVM y m´etodos de MKL, utilizando diferentes kernels y sus combinaciones, en la tarea de clasificación binaria de microarrays de distintos tipos de cáncer entre ellos metástasis de cáncer mamario que es el objeto de estudio del presente trabajo. Después de realizar un test post-hoc, nuestra propuesta muestra un mejor desempeño respecto a otras combinaciones de kernels, que los otros métodos evaluados.spaUniversidad Nacional de Trujilloinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de TrujilloRepositorio institucional - UNITRUreponame:UNITRU-Tesisinstname:Universidad Nacional de Trujilloinstacron:UNITRUMicroarray, Metástasis de cáncerDetección de metástasis de cáncer mamario usando máquinas de soporte vectorial a partir de datos de microarrayinfo:eu-repo/semantics/bachelorThesisSUNEDUTítulo ProfesionalIngeniero InformáticoInformáticaUniversidad Nacional de Trujillo.Facultad de Ciencias Fisicas y MatematicasORIGINALCALDERON NIQUIN, Marks Arturo.pdfCALDERON NIQUIN, Marks Arturo.pdfapplication/pdf1714073https://dspace.unitru.edu.pe/bitstreams/887d2859-32ef-44df-a978-d9545bfacbd4/download672a84243426c8d99ca21fd02e65179bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace.unitru.edu.pe/bitstreams/0e6e402b-b67e-4b49-8569-07ab1be2ae9f/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14414/4887oai:dspace.unitru.edu.pe:20.500.14414/48872024-04-21 11:41:15.947http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://dspace.unitru.edu.peRepositorio Institucional - UNITRUrepositorios@unitru.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.924177 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).