Thermodynamic Formalism For Amenable Groups and Countable State Spaces.
Descripción del Articulo
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of d...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de Moquegua |
Repositorio: | UNAM-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.unam.edu.pe:UNAM/598 |
Enlace del recurso: | https://repositorio.unam.edu.pe/handle/UNAM/598 https://doi.org/10.1017/S1474748024000112 |
Nivel de acceso: | acceso abierto |
Materia: | Amenable group. Countable state space Gibbs measure. Pressure. Thermodynamic formalism. https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
UNAM_eafa49c8acc3d3eb69db555bf2b61ed0 |
---|---|
oai_identifier_str |
oai:repositorio.unam.edu.pe:UNAM/598 |
network_acronym_str |
UNAM |
network_name_str |
UNAM-Institucional |
repository_id_str |
. |
dc.title.none.fl_str_mv |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
title |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
spellingShingle |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. Beltrán, Elmer R Amenable group. Countable state space Gibbs measure. Pressure. Thermodynamic formalism. https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
title_full |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
title_fullStr |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
title_full_unstemmed |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
title_sort |
Thermodynamic Formalism For Amenable Groups and Countable State Spaces. |
author |
Beltrán, Elmer R |
author_facet |
Beltrán, Elmer R Borsato, Luísa Bissacot, Rodrigo Briceño, Raimundo |
author_role |
author |
author2 |
Borsato, Luísa Bissacot, Rodrigo Briceño, Raimundo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Beltrán, Elmer R Borsato, Luísa Bissacot, Rodrigo Briceño, Raimundo |
dc.subject.en.fl_str_mv |
Amenable group. Countable state space Gibbs measure. Pressure. Thermodynamic formalism. |
topic |
Amenable group. Countable state space Gibbs measure. Pressure. Thermodynamic formalism. https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds. © The Author(s), 2024. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-04T16:50:17Z |
dc.date.available.none.fl_str_mv |
2024-10-04T16:50:17Z |
dc.date.issued.fl_str_mv |
2024-03-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unam.edu.pe/handle/UNAM/598 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1017/S1474748024000112 |
url |
https://repositorio.unam.edu.pe/handle/UNAM/598 https://doi.org/10.1017/S1474748024000112 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Journal of the Institute of Mathematics of Jussieu |
dc.relation.uri.none.fl_str_mv |
https://doi.org/10.1017/S1474748024000112 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
Repositorio Institucional - UNAM reponame:UNAM-Institucional instname:Universidad Nacional de Moquegua instacron:UNAM |
instname_str |
Universidad Nacional de Moquegua |
instacron_str |
UNAM |
institution |
UNAM |
reponame_str |
UNAM-Institucional |
collection |
UNAM-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.unam.edu.pe/bitstreams/735e2a13-d921-4cfa-b42f-e5439a6ae2cf/download https://repositorio.unam.edu.pe/bitstreams/5c7d3027-cffc-48b7-8c22-33912ecb1807/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 562ae53ce6ca99b2ec2e6825463265b4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio - Universidad Nacional de Moquegua |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1813093211822882816 |
spelling |
Beltrán, Elmer RBorsato, LuísaBissacot, RodrigoBriceño, Raimundo2024-10-04T16:50:17Z2024-10-04T16:50:17Z2024-03-15https://repositorio.unam.edu.pe/handle/UNAM/598https://doi.org/10.1017/S1474748024000112Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds. © The Author(s), 2024.application/pdfengCambridge University PressJournal of the Institute of Mathematics of Jussieuhttps://doi.org/10.1017/S1474748024000112info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0Repositorio Institucional - UNAMreponame:UNAM-Institucionalinstname:Universidad Nacional de Moqueguainstacron:UNAMAmenable group.Countable state spaceGibbs measure.Pressure.Thermodynamic formalism.https://purl.org/pe-repo/ocde/ford#1.01.00Thermodynamic Formalism For Amenable Groups and Countable State Spaces.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txtapplication/octet_stream1748https://repositorio.unam.edu.pe/bitstreams/735e2a13-d921-4cfa-b42f-e5439a6ae2cf/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTHUMBNAIL11.jpgapplication/octet_stream6123https://repositorio.unam.edu.pe/bitstreams/5c7d3027-cffc-48b7-8c22-33912ecb1807/download562ae53ce6ca99b2ec2e6825463265b4MD53UNAM/598oai:repositorio.unam.edu.pe:UNAM/5982024-10-04 11:54:39.885https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unam.edu.peRepositorio - Universidad Nacional de Moqueguadspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.927358 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).