Thermodynamic Formalism For Amenable Groups and Countable State Spaces.

Descripción del Articulo

Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of d...

Descripción completa

Detalles Bibliográficos
Autores: Beltrán, Elmer R, Borsato, Luísa, Bissacot, Rodrigo, Briceño, Raimundo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Moquegua
Repositorio:UNAM-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unam.edu.pe:UNAM/598
Enlace del recurso:https://repositorio.unam.edu.pe/handle/UNAM/598
https://doi.org/10.1017/S1474748024000112
Nivel de acceso:acceso abierto
Materia:Amenable group.
Countable state space
Gibbs measure.
Pressure.
Thermodynamic formalism.
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds. © The Author(s), 2024.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).