Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)

Descripción del Articulo

El objetivo del presente trabajo de investigación fue modelar matemáticamente el proceso de osmodeshidratación del aguaymanto, evaluando las condiciones adecuadas para el proceso que fueron comprendidos por dos agentes osmóticos sacarosa y xilitol, a dos concentraciones 20 y 40 °Brix y tres niveles...

Descripción completa

Detalles Bibliográficos
Autor: Luna Canchari, Jasmine Sara
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/2078
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/2078
Nivel de acceso:acceso abierto
Materia:Aguaymanto
Difusividad efectiva
Modelo cinético
https://purl.org/pe-repo/ocde/ford#2.11.01
id UEPU_4a141a520c3f477552a10184c1e768d4
oai_identifier_str oai:repositorio.upeu.edu.pe:20.500.12840/2078
network_acronym_str UEPU
network_name_str UPEU-Tesis
repository_id_str 4840
dc.title.en_ES.fl_str_mv Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
title Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
spellingShingle Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
Luna Canchari, Jasmine Sara
Aguaymanto
Difusividad efectiva
Modelo cinético
https://purl.org/pe-repo/ocde/ford#2.11.01
title_short Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
title_full Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
title_fullStr Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
title_full_unstemmed Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
title_sort Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)
author Luna Canchari, Jasmine Sara
author_facet Luna Canchari, Jasmine Sara
author_role author
dc.contributor.advisor.fl_str_mv Silva Paz, Reynaldo Justino
dc.contributor.author.fl_str_mv Luna Canchari, Jasmine Sara
dc.subject.en_ES.fl_str_mv Aguaymanto
Difusividad efectiva
Modelo cinético
topic Aguaymanto
Difusividad efectiva
Modelo cinético
https://purl.org/pe-repo/ocde/ford#2.11.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.01
description El objetivo del presente trabajo de investigación fue modelar matemáticamente el proceso de osmodeshidratación del aguaymanto, evaluando las condiciones adecuadas para el proceso que fueron comprendidos por dos agentes osmóticos sacarosa y xilitol, a dos concentraciones 20 y 40 °Brix y tres niveles de temperatura 20, 30 y 40 °C. Se modeló en base a las ecuaciones de Azuara, Crank y Biswal-Bozorgmehr modificada. Durante la investigación se analizó la materia prima el cual, presentó un diámetro 1.9 ± 0.3 cm, peso 7 ± 0.5 gr, 12 ± 0.5 ° Brix, 2.5 ± 0.7 de acidez, 3.5 ± 0.3 de pH, 80.28 ± 0.8 % de humedad y 4.5 ± 0.9 de índice de madurez. Los tratamientos con sacarosa y xilitol a 40 °Brix a 40 °C obtuvieron mayor pérdida de peso, pérdida de agua y ganancia de sólidos. De acuerdo con los parámetros de K(PA) y K(GS), estos presentaron cierta dependencia con la temperatura del proceso, lo cual ayudó a calcular el K(PA) , se tiene con sacarosa a 20 y 40 °Brix, datos de 14.007 ± 1.5, 89.580 ± 16.4, y con xilitol a 14.748 ± 11.4 y 41.864 ± 24.3 m2 s-1, respectivamente. Para los parámetros cinéticos de K(GS), se tiene con sacarosa a 20 y 40 °Brix, con 2.993 ± 0.1, 7.431 ± 2.6, y con xilitol 3.799 ± 0.1 y 13.805 ± 6.2 m2 s-1, respectivamente. Para los parámetros sobre los coeficiente de difusión De(PA) se tiene con sacarosa a 20 y 40 °Brix, con 16.59 ± 2.74, 32.68 ± 2.36, y con xilitol a 7.45 ± 1.32 y 14.18 ± 3.25 m2 s-1, respectivamente. Y para la De(GS) a 20 y 40 °Brix, con sacarosa a 16.80 ± 3.11, 32.69 ± 3.33, y con xilitol a 7.45 ± 1.31 y 14.18 ± 3.25 m2 s -1, respectivamente. Los análisis estadísticos tanto el modelo de Biswal – Bozorgmehr modificado resultaron ser útiles para describir la cinética de transferencia de materia durante la deshidratación osmótica, no obstante el modelo Biswal – Bozorgmehr obtuvo mejor calidad de ajuste sobre la pérdida de peso y sólidos solubles para cada uno de los experimentos realizados. El análisis de color del aguaymanto deshidratado más próximo a los valores del fruto fresco fue con xilitol a 40 °Brix a 40 °C L*= 52.36 ± 3.74, a*= 19.49 ± 0.57 y b*= 50.69 ± 0.19. Durante el proceso de deshidratación osmótica se tuvo 0.919 ± 0.019 de aw a 240 min, donde los tratamiento a 40 °Brix a 40 °C con xilitol y sacarosa arrojaron 15.1 y 16.9 % de humedad, respectivamente.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-10-07T16:12:09Z
dc.date.available.none.fl_str_mv 2019-10-07T16:12:09Z
dc.date.issued.fl_str_mv 2019-10-24
dc.type.en_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.upeu.edu.pe/handle/20.500.12840/2078
url http://repositorio.upeu.edu.pe/handle/20.500.12840/2078
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.en_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/3.0/es/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/es/
dc.format.en_ES.fl_str_mv application/pdf
dc.publisher.en_ES.fl_str_mv Universidad Peruana Unión
dc.publisher.country.none.fl_str_mv PE
dc.source.en_ES.fl_str_mv Universidad Peruana Unión
Repositorio Institucional - UPEU
dc.source.none.fl_str_mv reponame:UPEU-Tesis
instname:Universidad Peruana Unión
instacron:UPEU
instname_str Universidad Peruana Unión
instacron_str UPEU
institution UPEU
reponame_str UPEU-Tesis
collection UPEU-Tesis
bitstream.url.fl_str_mv https://repositorio.upeu.edu.pe/bitstreams/aed60563-b214-495f-8472-9dbdb043b49a/download
https://repositorio.upeu.edu.pe/bitstreams/b2d3bfcf-e630-4aca-bac8-7596c6dd2350/download
https://repositorio.upeu.edu.pe/bitstreams/9d2bd5de-feb7-47cf-a5d3-ed4699a65904/download
https://repositorio.upeu.edu.pe/bitstreams/bb6e9cd1-2cca-44b0-8fa6-3defabb1fcd0/download
bitstream.checksum.fl_str_mv 3a187c6777192956934dc439baa11468
ff28a15b31d8b36d045b61ef83195dd0
8a4605be74aa9ea9d79846c1fba20a33
0168effd5aa4ce7b06ae01499ca7d3b8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace 7
repository.mail.fl_str_mv repositorio-help@upeu.edu.pe
_version_ 1835737478504382464
spelling Silva Paz, Reynaldo JustinoLuna Canchari, Jasmine Sara2019-10-07T16:12:09Z2019-10-07T16:12:09Z2019-10-24http://repositorio.upeu.edu.pe/handle/20.500.12840/2078El objetivo del presente trabajo de investigación fue modelar matemáticamente el proceso de osmodeshidratación del aguaymanto, evaluando las condiciones adecuadas para el proceso que fueron comprendidos por dos agentes osmóticos sacarosa y xilitol, a dos concentraciones 20 y 40 °Brix y tres niveles de temperatura 20, 30 y 40 °C. Se modeló en base a las ecuaciones de Azuara, Crank y Biswal-Bozorgmehr modificada. Durante la investigación se analizó la materia prima el cual, presentó un diámetro 1.9 ± 0.3 cm, peso 7 ± 0.5 gr, 12 ± 0.5 ° Brix, 2.5 ± 0.7 de acidez, 3.5 ± 0.3 de pH, 80.28 ± 0.8 % de humedad y 4.5 ± 0.9 de índice de madurez. Los tratamientos con sacarosa y xilitol a 40 °Brix a 40 °C obtuvieron mayor pérdida de peso, pérdida de agua y ganancia de sólidos. De acuerdo con los parámetros de K(PA) y K(GS), estos presentaron cierta dependencia con la temperatura del proceso, lo cual ayudó a calcular el K(PA) , se tiene con sacarosa a 20 y 40 °Brix, datos de 14.007 ± 1.5, 89.580 ± 16.4, y con xilitol a 14.748 ± 11.4 y 41.864 ± 24.3 m2 s-1, respectivamente. Para los parámetros cinéticos de K(GS), se tiene con sacarosa a 20 y 40 °Brix, con 2.993 ± 0.1, 7.431 ± 2.6, y con xilitol 3.799 ± 0.1 y 13.805 ± 6.2 m2 s-1, respectivamente. Para los parámetros sobre los coeficiente de difusión De(PA) se tiene con sacarosa a 20 y 40 °Brix, con 16.59 ± 2.74, 32.68 ± 2.36, y con xilitol a 7.45 ± 1.32 y 14.18 ± 3.25 m2 s-1, respectivamente. Y para la De(GS) a 20 y 40 °Brix, con sacarosa a 16.80 ± 3.11, 32.69 ± 3.33, y con xilitol a 7.45 ± 1.31 y 14.18 ± 3.25 m2 s -1, respectivamente. Los análisis estadísticos tanto el modelo de Biswal – Bozorgmehr modificado resultaron ser útiles para describir la cinética de transferencia de materia durante la deshidratación osmótica, no obstante el modelo Biswal – Bozorgmehr obtuvo mejor calidad de ajuste sobre la pérdida de peso y sólidos solubles para cada uno de los experimentos realizados. El análisis de color del aguaymanto deshidratado más próximo a los valores del fruto fresco fue con xilitol a 40 °Brix a 40 °C L*= 52.36 ± 3.74, a*= 19.49 ± 0.57 y b*= 50.69 ± 0.19. Durante el proceso de deshidratación osmótica se tuvo 0.919 ± 0.019 de aw a 240 min, donde los tratamiento a 40 °Brix a 40 °C con xilitol y sacarosa arrojaron 15.1 y 16.9 % de humedad, respectivamente.TesisLIMAEscuela Profesional de Ingeniería de AlimentosProcesamiento, seguridad y gestión en la industria alimentariaapplication/pdfspaUniversidad Peruana UniónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/es/Universidad Peruana UniónRepositorio Institucional - UPEUreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUAguaymantoDifusividad efectivaModelo cinéticohttps://purl.org/pe-repo/ocde/ford#2.11.01Modelamiento matemático del proceso de osmodeshidratación de aguaymanto (Physalis peruviana L.)info:eu-repo/semantics/bachelorThesisSUNEDUIngeniería de AlimentosUniversidad Peruana Unión. Facultad de Ingeniería y ArquitecturaTítulo ProfesionalIngeniero de AlimentosORIGINALJasmine_Tesis_Licenciatura_2019.pdfJasmine_Tesis_Licenciatura_2019.pdfapplication/pdf2200580https://repositorio.upeu.edu.pe/bitstreams/aed60563-b214-495f-8472-9dbdb043b49a/download3a187c6777192956934dc439baa11468MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.upeu.edu.pe/bitstreams/b2d3bfcf-e630-4aca-bac8-7596c6dd2350/downloadff28a15b31d8b36d045b61ef83195dd0MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/9d2bd5de-feb7-47cf-a5d3-ed4699a65904/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILJasmine_Tesis_Licenciatura_2019.pdf.jpgJasmine_Tesis_Licenciatura_2019.pdf.jpgGenerated Thumbnailimage/jpeg3462https://repositorio.upeu.edu.pe/bitstreams/bb6e9cd1-2cca-44b0-8fa6-3defabb1fcd0/download0168effd5aa4ce7b06ae01499ca7d3b8MD5420.500.12840/2078oai:repositorio.upeu.edu.pe:20.500.12840/20782024-02-09 10:54:32.819http://creativecommons.org/licenses/by/3.0/es/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).