Cutting tools to optimize classification parameters of timber species with convolutional neural networks

Descripción del Articulo

Introduction: The great diversity of tropical timber species demands the development of new technologies capable of identifying them based on their patterns or anatomical characteristics. The application of convolutional neural networks (CNN) for the recognition of tropical timber species has increa...

Descripción completa

Detalles Bibliográficos
Autores: Centeno, Thonny Behyker, Ferreira, Cassiana, Inga, Janet Gaby, Vélez, Andrés, Huacho, Raul, Vidal, Osir Daygor, Moya, Sthefany Madjory, Reyes, Danessa Clarita, Goytendia, Walter Emilio, Ascue, Benji Steve
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Continental
Repositorio:CONTINENTAL-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.continental.edu.pe:20.500.12394/18325
Enlace del recurso:https://hdl.handle.net/20.500.12394/18325
https://doi.org/10.15517/rev.biol.trop.v71i1.51310
Nivel de acceso:acceso abierto
Materia:Árboles
Trees
Madera
Wood
Microscopía
Microscopy
https://purl.org/pe-repo/ocde/ford#1.00.00
id UCON_c01b010a392e7c9e1bef1bbcc1ab29a6
oai_identifier_str oai:repositorio.continental.edu.pe:20.500.12394/18325
network_acronym_str UCON
network_name_str CONTINENTAL-Institucional
repository_id_str 4517
dc.title.es_PE.fl_str_mv Cutting tools to optimize classification parameters of timber species with convolutional neural networks
dc.title.alternative.es_PE.fl_str_mv Herramientas de corte para optimizar los parámetros de clasificación de especies de madera con redes neuronales convolucionales
title Cutting tools to optimize classification parameters of timber species with convolutional neural networks
spellingShingle Cutting tools to optimize classification parameters of timber species with convolutional neural networks
Centeno, Thonny Behyker
Árboles
Trees
Madera
Wood
Microscopía
Microscopy
https://purl.org/pe-repo/ocde/ford#1.00.00
title_short Cutting tools to optimize classification parameters of timber species with convolutional neural networks
title_full Cutting tools to optimize classification parameters of timber species with convolutional neural networks
title_fullStr Cutting tools to optimize classification parameters of timber species with convolutional neural networks
title_full_unstemmed Cutting tools to optimize classification parameters of timber species with convolutional neural networks
title_sort Cutting tools to optimize classification parameters of timber species with convolutional neural networks
author Centeno, Thonny Behyker
author_facet Centeno, Thonny Behyker
Ferreira, Cassiana
Inga, Janet Gaby
Vélez, Andrés
Huacho, Raul
Vidal, Osir Daygor
Moya, Sthefany Madjory
Reyes, Danessa Clarita
Goytendia, Walter Emilio
Ascue, Benji Steve
author_role author
author2 Ferreira, Cassiana
Inga, Janet Gaby
Vélez, Andrés
Huacho, Raul
Vidal, Osir Daygor
Moya, Sthefany Madjory
Reyes, Danessa Clarita
Goytendia, Walter Emilio
Ascue, Benji Steve
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Centeno, Thonny Behyker
Ferreira, Cassiana
Inga, Janet Gaby
Vélez, Andrés
Huacho, Raul
Vidal, Osir Daygor
Moya, Sthefany Madjory
Reyes, Danessa Clarita
Goytendia, Walter Emilio
Ascue, Benji Steve
dc.subject.es_PE.fl_str_mv Árboles
Trees
Madera
Wood
Microscopía
Microscopy
topic Árboles
Trees
Madera
Wood
Microscopía
Microscopy
https://purl.org/pe-repo/ocde/ford#1.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.00.00
description Introduction: The great diversity of tropical timber species demands the development of new technologies capable of identifying them based on their patterns or anatomical characteristics. The application of convolutional neural networks (CNN) for the recognition of tropical timber species has increased in recent years due to the promising results of CNNs. Objective: To evaluate the quality of macroscopic images with three cutting tools to improve the visualization and distinction of anatomical features in the CNN model training. Methods: Samples were collected from 2020 to 2021 in areas of logging and sawmills in the Central Jungle, Peru. They were later sized and, after botanical and anatomical identification, cut in cross sections. A database of macroscopic images of the cross-section of wood was generated through cutting with three different tools and observing its performance in the laboratory, field, and checkpoint. Results: Using three cutting tools, we obtained high quality images of the cross section of wood; 3 750 macroscopic images were obtained with a portable microscope and correspond to 25 timber species. We found the “Tramontina” knife to be durable, however, it loses its edge easily and requires a sharpening tool, the “Pretul” retractable cutter is suitable for cutting soft and hard wood in small laboratory samples and finally the “Ubermann” knife is suitable for use in the field, laboratory, and checkpoint, because it has a durable sheath and interchangeable blades in case of dullness. Conclusion: The quality of the images is decisive in the classification of timber species, because it allows a better visualization and distinction of the anatomical characteristics in training with the EfficientNet B0 and Custom Vision convolutional neural network models, which was evidenced in the precision metrics. © 2023, Universidad de Costa Rica. All rights reserved.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2025-11-05T16:53:31Z
dc.date.available.none.fl_str_mv 2025-11-05T16:53:31Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.citation.es_PE.fl_str_mv Centeno, T. B., Ferreira, C., Inga, J. G., Vélez, A., Huacho, R., Vidal, O. D., Moya, S. M., Reyes, D. C., Goytendia, W. E., Ascue, B. S., & Tomazello-Filho, M. (2023). Cutting tools to optimize classification parameters of timber species with convolutional neural networks. Revista De Biología Tropical, 71(1), e51310. https://doi.org/10.15517/rev.biol.trop.v71i1.51310
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12394/18325
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15517/rev.biol.trop.v71i1.51310
identifier_str_mv Centeno, T. B., Ferreira, C., Inga, J. G., Vélez, A., Huacho, R., Vidal, O. D., Moya, S. M., Reyes, D. C., Goytendia, W. E., Ascue, B. S., & Tomazello-Filho, M. (2023). Cutting tools to optimize classification parameters of timber species with convolutional neural networks. Revista De Biología Tropical, 71(1), e51310. https://doi.org/10.15517/rev.biol.trop.v71i1.51310
url https://hdl.handle.net/20.500.12394/18325
https://doi.org/10.15517/rev.biol.trop.v71i1.51310
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv MaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central.
dc.relation.uri.es_ES.fl_str_mv https://www.perucris.pe/entities/project/f20114cc-e13c-4a20-8087-61690914be97/details
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.es_PE.fl_str_mv Attribution 4.0 International (CC BY 4.0)
dc.rights.accessRights.es_PE.fl_str_mv Acceso abierto
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Attribution 4.0 International (CC BY 4.0)
Acceso abierto
dc.format.es_PE.fl_str_mv application/pdf
dc.format.extent.es_PE.fl_str_mv 17 páginas.
dc.publisher.es_PE.fl_str_mv Universidad Continental
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Continental
Repositorio Institucional - Continental
dc.source.none.fl_str_mv reponame:CONTINENTAL-Institucional
instname:Universidad Continental
instacron:CONTINENTAL
instname_str Universidad Continental
instacron_str CONTINENTAL
institution CONTINENTAL
reponame_str CONTINENTAL-Institucional
collection CONTINENTAL-Institucional
bitstream.url.fl_str_mv https://repositorio.continental.edu.pe/bitstream/20.500.12394/18325/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Continental
repository.mail.fl_str_mv dspaceconti@continental.edu.pe
_version_ 1848871537372823552
spelling Centeno, Thonny BehykerFerreira, CassianaInga, Janet GabyVélez, AndrésHuacho, RaulVidal, Osir DaygorMoya, Sthefany MadjoryReyes, Danessa ClaritaGoytendia, Walter EmilioAscue, Benji Steve2025-11-05T16:53:31Z2025-11-05T16:53:31Z2023Centeno, T. B., Ferreira, C., Inga, J. G., Vélez, A., Huacho, R., Vidal, O. D., Moya, S. M., Reyes, D. C., Goytendia, W. E., Ascue, B. S., & Tomazello-Filho, M. (2023). Cutting tools to optimize classification parameters of timber species with convolutional neural networks. Revista De Biología Tropical, 71(1), e51310. https://doi.org/10.15517/rev.biol.trop.v71i1.51310https://hdl.handle.net/20.500.12394/18325https://doi.org/10.15517/rev.biol.trop.v71i1.51310Introduction: The great diversity of tropical timber species demands the development of new technologies capable of identifying them based on their patterns or anatomical characteristics. The application of convolutional neural networks (CNN) for the recognition of tropical timber species has increased in recent years due to the promising results of CNNs. Objective: To evaluate the quality of macroscopic images with three cutting tools to improve the visualization and distinction of anatomical features in the CNN model training. Methods: Samples were collected from 2020 to 2021 in areas of logging and sawmills in the Central Jungle, Peru. They were later sized and, after botanical and anatomical identification, cut in cross sections. A database of macroscopic images of the cross-section of wood was generated through cutting with three different tools and observing its performance in the laboratory, field, and checkpoint. Results: Using three cutting tools, we obtained high quality images of the cross section of wood; 3 750 macroscopic images were obtained with a portable microscope and correspond to 25 timber species. We found the “Tramontina” knife to be durable, however, it loses its edge easily and requires a sharpening tool, the “Pretul” retractable cutter is suitable for cutting soft and hard wood in small laboratory samples and finally the “Ubermann” knife is suitable for use in the field, laboratory, and checkpoint, because it has a durable sheath and interchangeable blades in case of dullness. Conclusion: The quality of the images is decisive in the classification of timber species, because it allows a better visualization and distinction of the anatomical characteristics in training with the EfficientNet B0 and Custom Vision convolutional neural network models, which was evidenced in the precision metrics. © 2023, Universidad de Costa Rica. All rights reserved.Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológicaapplication/pdf17 páginas.engUniversidad ContinentalPEMaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central.https://www.perucris.pe/entities/project/f20114cc-e13c-4a20-8087-61690914be97/detailsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Attribution 4.0 International (CC BY 4.0)Acceso abiertoUniversidad ContinentalRepositorio Institucional - Continentalreponame:CONTINENTAL-Institucionalinstname:Universidad Continentalinstacron:CONTINENTALÁrbolesTreesMaderaWoodMicroscopíaMicroscopyhttps://purl.org/pe-repo/ocde/ford#1.00.00Cutting tools to optimize classification parameters of timber species with convolutional neural networksHerramientas de corte para optimizar los parámetros de clasificación de especies de madera con redes neuronales convolucionalesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.continental.edu.pe/bitstream/20.500.12394/18325/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5120.500.12394/18325oai:repositorio.continental.edu.pe:20.500.12394/183252025-11-05 11:55:53.28Repositorio Continentaldspaceconti@continental.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.404207
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).