Desarrollo de un indicador de salud basado en algoritmos de aprendizaje supervisado para predecir la vida útil de motores eléctricos en equipos de gran minería

Descripción del Articulo

Este trabajo tiene como propósito desarrollar un indicador de salud que permita predecir de forma confiable la vida útil de motores eléctricos utilizados en equipos de gran minería, haciendo uso de algoritmos de aprendizaje supervisado. Para lograrlo, se p artió del análisis de datos históricos de o...

Descripción completa

Detalles Bibliográficos
Autores: Apaza Choquepata, Edson Amidey, Taya Martinez, Susan Mabel
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Continental
Repositorio:CONTINENTAL-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.continental.edu.pe:20.500.12394/18033
Enlace del recurso:https://hdl.handle.net/20.500.12394/18033
Nivel de acceso:acceso abierto
Materia:Aprendizaje organizacional
Organizational learning
Mantenimiento y reparación
Maintenance and repair
Industria minera
Mining industry
Motores eléctricos
Electric motors
https://purl.org/pe-repo/ocde/ford#2.02.00
Descripción
Sumario:Este trabajo tiene como propósito desarrollar un indicador de salud que permita predecir de forma confiable la vida útil de motores eléctricos utilizados en equipos de gran minería, haciendo uso de algoritmos de aprendizaje supervisado. Para lograrlo, se p artió del análisis de datos históricos de operación y mantenimiento, identificando las variables que influyen directamente en el desgaste y funcionamiento de estos motores. A lo largo del estudio, se construyeron y entrenaron modelos predictivos empleando algoritmos como Random Forest, Support Vector Machines (SVM) y redes neuronales artificiales, todo dentro del entorno MATLAB. Una vez desarrollados, estos modelos fueron validados mediante simulaciones, con el objetivo de comprobar su capacidad para antici par fallas y, así, mejorar las estrategias de mantenimiento predictivo. La metodología incluyó varias etapas clave: primero, se recopilaron datos históricos relevantes; luego, estos se prepararon mediante técnicas de filtrado y normalización. También se re alizó un análisis de monotonicidad para seleccionar las variables más representativas. Con esta información, se entrenaron los modelos de predicción aplicando reducción de dimensiones a través del Análisis de Componentes Principales (PCA). Finalmente, se e valuó el desempeño de los modelos usando métricas como el Error Cuadrático Medio (MSE), el Error Absoluto Medio (MAE), la Raíz del Error Cuadrático Medio (RMSE) y el Error Porcentual Absoluto Medio (MAPE). Los resultados obtenidos evidencian que el modelo basado en Red Neuronal Artificial (ANN) presentó el mejor desempeño general, al registrar el menor MSE (716.75), así como los valores más bajos de MAE (24.38), RMSE (26.77) y MAPE (77.65%), en comparación con Support Vector Machines (SVM) y Random Forest. La simulación del indicador de salud mostró una degradación progresiva del motor eléctrico a lo largo del tiempo, permitiendo predecir el tiempo restante hasta alcanzar un umbral crítico. En conclusión, la implementación del indicador de salud podría mejor ar la gestión del mantenimiento predictivo, optimizando la disponibilidad de los equipos y reduciendo los costos asociados a fallas inesperadas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).