Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator

Descripción del Articulo

This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients whil...

Descripción completa

Detalles Bibliográficos
Autores: Zevallos, Jose, Zevallos, J., Chávarri-Velarde, Eduardo, Gutierrez, Ronald R., Lavado-Casimiro, W.
Formato: artículo
Fecha de Publicación:2025
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/4469
Enlace del recurso:https://hdl.handle.net/20.500.12542/4469
https://doi.org/10.1016/j.envsoft.2025.106621
Nivel de acceso:acceso abierto
Materia:Inundaciones
Hydraulic models
Calibration
Hidráulica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
id SEAM_dd7e14dc295de731547b1492ed97746d
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/4469
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
title Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
spellingShingle Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
Zevallos, Jose
Inundaciones
Hydraulic models
Calibration
Hidráulica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
title_short Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
title_full Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
title_fullStr Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
title_full_unstemmed Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
title_sort Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
author Zevallos, Jose
author_facet Zevallos, Jose
Zevallos, J.
Chávarri-Velarde, Eduardo
Gutierrez, Ronald R.
Lavado-Casimiro, W.
author_role author
author2 Zevallos, J.
Chávarri-Velarde, Eduardo
Gutierrez, Ronald R.
Lavado-Casimiro, W.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Zevallos, Jose
Zevallos, J.
Chávarri-Velarde, Eduardo
Gutierrez, Ronald R.
Lavado-Casimiro, W.
dc.subject.es_PE.fl_str_mv Inundaciones
Hydraulic models
Calibration
Hidráulica
Cuencas
topic Inundaciones
Hydraulic models
Calibration
Hidráulica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.es_PE.fl_str_mv inundaciones - Clima y Eventos Naturales
description This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients while accounting for structural model error. A CNN trained on a simulation ensemble predicts flood depth under varying roughness scenarios, enabling substantial computational savings. The emulator is embedded in a Bayesian inference scheme with a Gaussian Process discrepancy model to capture systematic deviations. Validation with synthetic scenarios demonstrates accurate roughness retrieval in hydraulically sensitive areas. Additionally, a real-case validation was performed using PeruSAT-1, a high-resolution Earth observation satellite operated by the Peruvian Space Agency (CONIDA), acquired during the 04/10/2017 flood. This confirmed the framework's ability to reproduce observed depth patterns under data scarcity. The method provides a scalable solution for parameter inference in flood-prone regions where conventional validation approaches remain limited.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-09T15:57:56Z
dc.date.available.none.fl_str_mv 2025-10-09T15:57:56Z
dc.date.issued.fl_str_mv 2025
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/4469
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.envsoft.2025.106621
dc.identifier.journal.es_PE.fl_str_mv Environmental Modelling and Software
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/4469
url https://hdl.handle.net/20.500.12542/4469
https://doi.org/10.1016/j.envsoft.2025.106621
identifier_str_mv Environmental Modelling and Software
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.isformatof.none.fl_str_mv urn:issn:1873-6726
dc.relation.uri.es_PE.fl_str_mv https://linkinghub.elsevier.com/retrieve/pii/S1364815225003056
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/1/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/2/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/3/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/4/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpg
bitstream.checksum.fl_str_mv 66198215d913093d7d458b688b872c1d
8a4605be74aa9ea9d79846c1fba20a33
811e81c6f30705fd55eabb1ec98f6ce3
d6c2104f462b1edf5d1be9686fe716ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1846333490569674752
spelling Zevallos, JoseZevallos, J.Chávarri-Velarde, EduardoGutierrez, Ronald R.Lavado-Casimiro, W.2025-10-09T15:57:56Z2025-10-09T15:57:56Z2025https://hdl.handle.net/20.500.12542/4469https://doi.org/10.1016/j.envsoft.2025.106621Environmental Modelling and Softwarehttps://hdl.handle.net/20.500.12542/4469This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients while accounting for structural model error. A CNN trained on a simulation ensemble predicts flood depth under varying roughness scenarios, enabling substantial computational savings. The emulator is embedded in a Bayesian inference scheme with a Gaussian Process discrepancy model to capture systematic deviations. Validation with synthetic scenarios demonstrates accurate roughness retrieval in hydraulically sensitive areas. Additionally, a real-case validation was performed using PeruSAT-1, a high-resolution Earth observation satellite operated by the Peruvian Space Agency (CONIDA), acquired during the 04/10/2017 flood. This confirmed the framework's ability to reproduce observed depth patterns under data scarcity. The method provides a scalable solution for parameter inference in flood-prone regions where conventional validation approaches remain limited.application/pdfspaElsevierurn:issn:1873-6726https://linkinghub.elsevier.com/retrieve/pii/S1364815225003056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIInundacionesHydraulic modelsCalibrationHidráulicaCuencashttps://purl.org/pe-repo/ocde/ford#1.05.11inundaciones - Clima y Eventos NaturalesBayesian calibration of a 2D hydraulic model using a convolutional neural network emulatorinfo:eu-repo/semantics/articletext/publicacion cientificaORIGINALBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdfBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdfTexto Completoapplication/pdf7574991http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/1/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf66198215d913093d7d458b688b872c1dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txtBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txtExtracted texttext/plain99807http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/3/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txt811e81c6f30705fd55eabb1ec98f6ce3MD53THUMBNAILBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpgBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpgGenerated Thumbnailimage/jpeg8147http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/4/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpgd6c2104f462b1edf5d1be9686fe716adMD5420.500.12542/4469oai:repositorio.senamhi.gob.pe:20.500.12542/44692025-10-09 12:06:58.098Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.4721
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).