Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator
Descripción del Articulo
This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients whil...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
Repositorio: | SENAMHI-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/4469 |
Enlace del recurso: | https://hdl.handle.net/20.500.12542/4469 https://doi.org/10.1016/j.envsoft.2025.106621 |
Nivel de acceso: | acceso abierto |
Materia: | Inundaciones Hydraulic models Calibration Hidráulica Cuencas https://purl.org/pe-repo/ocde/ford#1.05.11 inundaciones - Clima y Eventos Naturales |
id |
SEAM_dd7e14dc295de731547b1492ed97746d |
---|---|
oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/4469 |
network_acronym_str |
SEAM |
network_name_str |
SENAMHI-Institucional |
repository_id_str |
4818 |
dc.title.es_PE.fl_str_mv |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
title |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
spellingShingle |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator Zevallos, Jose Inundaciones Hydraulic models Calibration Hidráulica Cuencas https://purl.org/pe-repo/ocde/ford#1.05.11 inundaciones - Clima y Eventos Naturales |
title_short |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
title_full |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
title_fullStr |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
title_full_unstemmed |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
title_sort |
Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator |
author |
Zevallos, Jose |
author_facet |
Zevallos, Jose Zevallos, J. Chávarri-Velarde, Eduardo Gutierrez, Ronald R. Lavado-Casimiro, W. |
author_role |
author |
author2 |
Zevallos, J. Chávarri-Velarde, Eduardo Gutierrez, Ronald R. Lavado-Casimiro, W. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Zevallos, Jose Zevallos, J. Chávarri-Velarde, Eduardo Gutierrez, Ronald R. Lavado-Casimiro, W. |
dc.subject.es_PE.fl_str_mv |
Inundaciones Hydraulic models Calibration Hidráulica Cuencas |
topic |
Inundaciones Hydraulic models Calibration Hidráulica Cuencas https://purl.org/pe-repo/ocde/ford#1.05.11 inundaciones - Clima y Eventos Naturales |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
dc.subject.sinia.es_PE.fl_str_mv |
inundaciones - Clima y Eventos Naturales |
description |
This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients while accounting for structural model error. A CNN trained on a simulation ensemble predicts flood depth under varying roughness scenarios, enabling substantial computational savings. The emulator is embedded in a Bayesian inference scheme with a Gaussian Process discrepancy model to capture systematic deviations. Validation with synthetic scenarios demonstrates accurate roughness retrieval in hydraulically sensitive areas. Additionally, a real-case validation was performed using PeruSAT-1, a high-resolution Earth observation satellite operated by the Peruvian Space Agency (CONIDA), acquired during the 04/10/2017 flood. This confirmed the framework's ability to reproduce observed depth patterns under data scarcity. The method provides a scalable solution for parameter inference in flood-prone regions where conventional validation approaches remain limited. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-10-09T15:57:56Z |
dc.date.available.none.fl_str_mv |
2025-10-09T15:57:56Z |
dc.date.issued.fl_str_mv |
2025 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.sinia.es_PE.fl_str_mv |
text/publicacion cientifica |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/4469 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.envsoft.2025.106621 |
dc.identifier.journal.es_PE.fl_str_mv |
Environmental Modelling and Software |
dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/4469 |
url |
https://hdl.handle.net/20.500.12542/4469 https://doi.org/10.1016/j.envsoft.2025.106621 |
identifier_str_mv |
Environmental Modelling and Software |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.isformatof.none.fl_str_mv |
urn:issn:1873-6726 |
dc.relation.uri.es_PE.fl_str_mv |
https://linkinghub.elsevier.com/retrieve/pii/S1364815225003056 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Elsevier |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
instacron_str |
SENAMHI |
institution |
SENAMHI |
reponame_str |
SENAMHI-Institucional |
collection |
SENAMHI-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/1/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/2/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/3/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/4/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpg |
bitstream.checksum.fl_str_mv |
66198215d913093d7d458b688b872c1d 8a4605be74aa9ea9d79846c1fba20a33 811e81c6f30705fd55eabb1ec98f6ce3 d6c2104f462b1edf5d1be9686fe716ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
_version_ |
1846333490569674752 |
spelling |
Zevallos, JoseZevallos, J.Chávarri-Velarde, EduardoGutierrez, Ronald R.Lavado-Casimiro, W.2025-10-09T15:57:56Z2025-10-09T15:57:56Z2025https://hdl.handle.net/20.500.12542/4469https://doi.org/10.1016/j.envsoft.2025.106621Environmental Modelling and Softwarehttps://hdl.handle.net/20.500.12542/4469This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients while accounting for structural model error. A CNN trained on a simulation ensemble predicts flood depth under varying roughness scenarios, enabling substantial computational savings. The emulator is embedded in a Bayesian inference scheme with a Gaussian Process discrepancy model to capture systematic deviations. Validation with synthetic scenarios demonstrates accurate roughness retrieval in hydraulically sensitive areas. Additionally, a real-case validation was performed using PeruSAT-1, a high-resolution Earth observation satellite operated by the Peruvian Space Agency (CONIDA), acquired during the 04/10/2017 flood. This confirmed the framework's ability to reproduce observed depth patterns under data scarcity. The method provides a scalable solution for parameter inference in flood-prone regions where conventional validation approaches remain limited.application/pdfspaElsevierurn:issn:1873-6726https://linkinghub.elsevier.com/retrieve/pii/S1364815225003056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIInundacionesHydraulic modelsCalibrationHidráulicaCuencashttps://purl.org/pe-repo/ocde/ford#1.05.11inundaciones - Clima y Eventos NaturalesBayesian calibration of a 2D hydraulic model using a convolutional neural network emulatorinfo:eu-repo/semantics/articletext/publicacion cientificaORIGINALBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdfBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdfTexto Completoapplication/pdf7574991http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/1/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf66198215d913093d7d458b688b872c1dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txtBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txtExtracted texttext/plain99807http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/3/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.txt811e81c6f30705fd55eabb1ec98f6ce3MD53THUMBNAILBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpgBayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpgGenerated Thumbnailimage/jpeg8147http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/4469/4/Bayesian-calibration-2Dhydraulic-model-using-convolutional-neural-network-emulator_2025.pdf.jpgd6c2104f462b1edf5d1be9686fe716adMD5420.500.12542/4469oai:repositorio.senamhi.gob.pe:20.500.12542/44692025-10-09 12:06:58.098Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.4721 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).