Bayesian calibration of a 2D hydraulic model using a convolutional neural network emulator

Descripción del Articulo

This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients whil...

Descripción completa

Detalles Bibliográficos
Autores: Zevallos, Jose, Zevallos, J., Chávarri-Velarde, Eduardo, Gutierrez, Ronald R., Lavado-Casimiro, W.
Formato: artículo
Fecha de Publicación:2025
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/4469
Enlace del recurso:https://hdl.handle.net/20.500.12542/4469
https://doi.org/10.1016/j.envsoft.2025.106621
Nivel de acceso:acceso abierto
Materia:Inundaciones
Hydraulic models
Calibration
Hidráulica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
Descripción
Sumario:This study presents a Bayesian calibration framework for 2D hydraulic models using convolutional neural networks (CNNs) as surrogate emulators of TELEMAC-2D. Applied to the Lower Piura River Basin in northern Peru, the method estimates spatially distributed Manning's roughness coefficients while accounting for structural model error. A CNN trained on a simulation ensemble predicts flood depth under varying roughness scenarios, enabling substantial computational savings. The emulator is embedded in a Bayesian inference scheme with a Gaussian Process discrepancy model to capture systematic deviations. Validation with synthetic scenarios demonstrates accurate roughness retrieval in hydraulically sensitive areas. Additionally, a real-case validation was performed using PeruSAT-1, a high-resolution Earth observation satellite operated by the Peruvian Space Agency (CONIDA), acquired during the 04/10/2017 flood. This confirmed the framework's ability to reproduce observed depth patterns under data scarcity. The method provides a scalable solution for parameter inference in flood-prone regions where conventional validation approaches remain limited.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).