El teorema de Littlewood y el método de Weyl en la función Zeta de Riemann.

Descripción del Articulo

La función Zeta de Riemann C(s), está rodeada de misterios e intrincadas consecuencias, más aún, todo esto yace en el "Hipótesis de Riemann" considerado el problema más difícil de las matemáticas. Para una mayor compresión de la función Zeta de Riemann, se ha considerado necesario el estud...

Descripción completa

Detalles Bibliográficos
Autor: Saavedra Jiménez, Manuel Jesús
Formato: tesis de grado
Fecha de Publicación:2014
Institución:Universidad Nacional de Piura
Repositorio:UNP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unp.edu.pe:UNP/489
Enlace del recurso:https://repositorio.unp.edu.pe/handle/UNP/489
Nivel de acceso:acceso abierto
Materia:Teorema
Littlewood
Método
Matemáticas Aplicadas
Descripción
Sumario:La función Zeta de Riemann C(s), está rodeada de misterios e intrincadas consecuencias, más aún, todo esto yace en el "Hipótesis de Riemann" considerado el problema más difícil de las matemáticas. Para una mayor compresión de la función Zeta de Riemann, se ha considerado necesario el estudio de funciones aritméticas y de las series de Dirichlet, desarrollados en el Capítulo I. En el Capítulo II, se estudia la ecuación funcional, la cual es usada en la prueba de la infinidad de ceros de C(s) en la banda, O < R(s) < 1, además se estudia un resultado muy interesante, el Teorema de Hardy, el cual muestra la existencia de una infinidad de ceros con parte real 1/2, por último se estudia el Teorema de Hamburger, dándole a C(s) un sentido de unicidad respecto a las series de Dirichlet que cumplen con la ecuación funcional. En el Capítulo III, se hace estimaciones de ordenes y regiones libres de ceros de C(s), mediante el método de Weyl y el Teorema de Littlewood.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).