Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay

Descripción del Articulo

This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of thre...

Descripción completa

Detalles Bibliográficos
Autores: Cabanillas Zannini, Victor Rafael, Raposo, Carlos Alberto, Potenciano-Machado, Leyter
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17597
Enlace del recurso:https://hdl.handle.net/20.500.12724/17597
https://doi.org/10.2298/TAM210502006C
Nivel de acceso:acceso abierto
Materia:Viscoelasticity
Structural stability
Composite materials
Damping (Mechanics)
Partial differential equations
Viscoelastic materials
Delay differential equations
Functional differential equations
Stability
https://purl.org/pe-repo/ocde/ford#1.01.02
id RULI_bd908b98dc268460d5c69c0c60c1db9c
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17597
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
title Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
spellingShingle Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
Cabanillas Zannini, Victor Rafael
Viscoelasticity
Structural stability
Composite materials
Damping (Mechanics)
Partial differential equations
Structural stability
Viscoelastic materials
Delay differential equations
Functional differential equations
Stability
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
title_full Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
title_fullStr Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
title_full_unstemmed Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
title_sort Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
author Cabanillas Zannini, Victor Rafael
author_facet Cabanillas Zannini, Victor Rafael
Raposo, Carlos Alberto
Potenciano-Machado, Leyter
author_role author
author2 Raposo, Carlos Alberto
Potenciano-Machado, Leyter
author2_role author
author
dc.contributor.other.none.fl_str_mv Cabanillas Zannini, Victor Rafael
dc.contributor.author.fl_str_mv Cabanillas Zannini, Victor Rafael
Raposo, Carlos Alberto
Potenciano-Machado, Leyter
dc.subject.en_EN.fl_str_mv Viscoelasticity
Structural stability
Composite materials
Damping (Mechanics)
Partial differential equations
Structural stability
Viscoelastic materials
Delay differential equations
Functional differential equations
topic Viscoelasticity
Structural stability
Composite materials
Damping (Mechanics)
Partial differential equations
Structural stability
Viscoelastic materials
Delay differential equations
Functional differential equations
Stability
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Stability
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
description This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of three layers: two stiff outer layers, bottom and top faces, and a more compliant inner layer called “core layer”. Rao–Nakra system consists of three layers and the assumption is that there is no slip at the interface between contacts. The top and bottom layers are wave equations for the longitudinal displacements under Euler–Bernoulli beam assumptions. The core layer is one equation that describes the transverse displacement under Timoshenko beam assumptions. By using the semigroup theory, the well-posedness is given by applying the Lumer–Phillips Theorem. Exponential stability is proved by employing the Gearhart-Huang-Prüss’ Theorem.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-02-14T15:33:51Z
dc.date.available.none.fl_str_mv 2023-02-14T15:33:51Z
dc.date.issued.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Cabanillas, V., Raposo, C. & Potenciano-Machado, L. (2023). Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay. Theoretical and Applied Mechanics, 49 (1), 71-84. https://doi.org/10.2298/TAM210502006C
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17597
dc.identifier.journal.none.fl_str_mv Theoretical and Applied Mechanics
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.2298/TAM210502006C
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85134019362
identifier_str_mv Cabanillas, V., Raposo, C. & Potenciano-Machado, L. (2023). Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay. Theoretical and Applied Mechanics, 49 (1), 71-84. https://doi.org/10.2298/TAM210502006C
Theoretical and Applied Mechanics
0000000121541816
2-s2.0-85134019362
url https://hdl.handle.net/20.500.12724/17597
https://doi.org/10.2298/TAM210502006C
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 1450-5584
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Serbian Society of Mechanics
dc.publisher.country.none.fl_str_mv SR
publisher.none.fl_str_mv Serbian Society of Mechanics
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977346447769600
spelling Cabanillas Zannini, Victor RafaelRaposo, Carlos AlbertoPotenciano-Machado, LeyterCabanillas Zannini, Victor Rafael2023-02-14T15:33:51Z2023-02-14T15:33:51Z2022Cabanillas, V., Raposo, C. & Potenciano-Machado, L. (2023). Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay. Theoretical and Applied Mechanics, 49 (1), 71-84. https://doi.org/10.2298/TAM210502006Chttps://hdl.handle.net/20.500.12724/17597Theoretical and Applied Mechanics0000000121541816https://doi.org/10.2298/TAM210502006C2-s2.0-85134019362This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of three layers: two stiff outer layers, bottom and top faces, and a more compliant inner layer called “core layer”. Rao–Nakra system consists of three layers and the assumption is that there is no slip at the interface between contacts. The top and bottom layers are wave equations for the longitudinal displacements under Euler–Bernoulli beam assumptions. The core layer is one equation that describes the transverse displacement under Timoshenko beam assumptions. By using the semigroup theory, the well-posedness is given by applying the Lumer–Phillips Theorem. Exponential stability is proved by employing the Gearhart-Huang-Prüss’ Theorem.application/htmlengSerbian Society of MechanicsSRurn:issn: 1450-5584info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAViscoelasticityStructural stabilityComposite materialsDamping (Mechanics)Partial differential equationsStructural stabilityViscoelastic materialsDelay differential equationsFunctional differential equationsStabilityhttps://purl.org/pe-repo/ocde/ford#1.01.02Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delayinfo:eu-repo/semantics/articleArtículo en ScopusEstudios GeneralesAdministraciónNegocios InternacionalesEstudios Generales, Universidad de LimaOILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/17597oai:repositorio.ulima.edu.pe:20.500.12724/175972025-08-08 15:28:21.301Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.024647
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).