Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay
Descripción del Articulo
This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of thre...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17597 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/17597 https://doi.org/10.2298/TAM210502006C |
Nivel de acceso: | acceso abierto |
Materia: | Viscoelasticity Structural stability Composite materials Damping (Mechanics) Partial differential equations Viscoelastic materials Delay differential equations Functional differential equations Stability https://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
RULI_bd908b98dc268460d5c69c0c60c1db9c |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17597 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
title |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
spellingShingle |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay Cabanillas Zannini, Victor Rafael Viscoelasticity Structural stability Composite materials Damping (Mechanics) Partial differential equations Structural stability Viscoelastic materials Delay differential equations Functional differential equations Stability https://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
title_full |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
title_fullStr |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
title_full_unstemmed |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
title_sort |
Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay |
author |
Cabanillas Zannini, Victor Rafael |
author_facet |
Cabanillas Zannini, Victor Rafael Raposo, Carlos Alberto Potenciano-Machado, Leyter |
author_role |
author |
author2 |
Raposo, Carlos Alberto Potenciano-Machado, Leyter |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
Cabanillas Zannini, Victor Rafael |
dc.contributor.author.fl_str_mv |
Cabanillas Zannini, Victor Rafael Raposo, Carlos Alberto Potenciano-Machado, Leyter |
dc.subject.en_EN.fl_str_mv |
Viscoelasticity Structural stability Composite materials Damping (Mechanics) Partial differential equations Structural stability Viscoelastic materials Delay differential equations Functional differential equations |
topic |
Viscoelasticity Structural stability Composite materials Damping (Mechanics) Partial differential equations Structural stability Viscoelastic materials Delay differential equations Functional differential equations Stability https://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.es_PE.fl_str_mv |
Stability |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of three layers: two stiff outer layers, bottom and top faces, and a more compliant inner layer called “core layer”. Rao–Nakra system consists of three layers and the assumption is that there is no slip at the interface between contacts. The top and bottom layers are wave equations for the longitudinal displacements under Euler–Bernoulli beam assumptions. The core layer is one equation that describes the transverse displacement under Timoshenko beam assumptions. By using the semigroup theory, the well-posedness is given by applying the Lumer–Phillips Theorem. Exponential stability is proved by employing the Gearhart-Huang-Prüss’ Theorem. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-02-14T15:33:51Z |
dc.date.available.none.fl_str_mv |
2023-02-14T15:33:51Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Cabanillas, V., Raposo, C. & Potenciano-Machado, L. (2023). Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay. Theoretical and Applied Mechanics, 49 (1), 71-84. https://doi.org/10.2298/TAM210502006C |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17597 |
dc.identifier.journal.none.fl_str_mv |
Theoretical and Applied Mechanics |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.2298/TAM210502006C |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85134019362 |
identifier_str_mv |
Cabanillas, V., Raposo, C. & Potenciano-Machado, L. (2023). Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay. Theoretical and Applied Mechanics, 49 (1), 71-84. https://doi.org/10.2298/TAM210502006C Theoretical and Applied Mechanics 0000000121541816 2-s2.0-85134019362 |
url |
https://hdl.handle.net/20.500.12724/17597 https://doi.org/10.2298/TAM210502006C |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 1450-5584 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Serbian Society of Mechanics |
dc.publisher.country.none.fl_str_mv |
SR |
publisher.none.fl_str_mv |
Serbian Society of Mechanics |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977346447769600 |
spelling |
Cabanillas Zannini, Victor RafaelRaposo, Carlos AlbertoPotenciano-Machado, LeyterCabanillas Zannini, Victor Rafael2023-02-14T15:33:51Z2023-02-14T15:33:51Z2022Cabanillas, V., Raposo, C. & Potenciano-Machado, L. (2023). Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay. Theoretical and Applied Mechanics, 49 (1), 71-84. https://doi.org/10.2298/TAM210502006Chttps://hdl.handle.net/20.500.12724/17597Theoretical and Applied Mechanics0000000121541816https://doi.org/10.2298/TAM210502006C2-s2.0-85134019362This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of three layers: two stiff outer layers, bottom and top faces, and a more compliant inner layer called “core layer”. Rao–Nakra system consists of three layers and the assumption is that there is no slip at the interface between contacts. The top and bottom layers are wave equations for the longitudinal displacements under Euler–Bernoulli beam assumptions. The core layer is one equation that describes the transverse displacement under Timoshenko beam assumptions. By using the semigroup theory, the well-posedness is given by applying the Lumer–Phillips Theorem. Exponential stability is proved by employing the Gearhart-Huang-Prüss’ Theorem.application/htmlengSerbian Society of MechanicsSRurn:issn: 1450-5584info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAViscoelasticityStructural stabilityComposite materialsDamping (Mechanics)Partial differential equationsStructural stabilityViscoelastic materialsDelay differential equationsFunctional differential equationsStabilityhttps://purl.org/pe-repo/ocde/ford#1.01.02Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delayinfo:eu-repo/semantics/articleArtículo en ScopusEstudios GeneralesAdministraciónNegocios InternacionalesEstudios Generales, Universidad de LimaOILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17597/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/17597oai:repositorio.ulima.edu.pe:20.500.12724/175972025-08-08 15:28:21.301Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.024647 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).