Stability of solution for rao-nakra sandwich beam motel with Kelvin-Voigt damping and time delay

Descripción del Articulo

This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of thre...

Descripción completa

Detalles Bibliográficos
Autores: Cabanillas Zannini, Victor Rafael, Raposo, Carlos Alberto, Potenciano-Machado, Leyter
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17597
Enlace del recurso:https://hdl.handle.net/20.500.12724/17597
https://doi.org/10.2298/TAM210502006C
Nivel de acceso:acceso abierto
Materia:Viscoelasticity
Structural stability
Composite materials
Damping (Mechanics)
Partial differential equations
Viscoelastic materials
Delay differential equations
Functional differential equations
Stability
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:This paper deals with stability of solution for a one-dimensional model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time delay given by 1ℎ1 − 1ℎ1 − (− + + ) − − ( ・ , − ) = 0, 3ℎ3 − 3ℎ3 + (− + + ) − = 0, ℎ + − (− + + ) − = 0. A sandwich beam is an engineering model that consists of three layers: two stiff outer layers, bottom and top faces, and a more compliant inner layer called “core layer”. Rao–Nakra system consists of three layers and the assumption is that there is no slip at the interface between contacts. The top and bottom layers are wave equations for the longitudinal displacements under Euler–Bernoulli beam assumptions. The core layer is one equation that describes the transverse displacement under Timoshenko beam assumptions. By using the semigroup theory, the well-posedness is given by applying the Lumer–Phillips Theorem. Exponential stability is proved by employing the Gearhart-Huang-Prüss’ Theorem.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).