Exportación Completada — 

Effort Optimization Model in Warehouse Manual Picking. Case Study: Tusan Distribuidores

Descripción del Articulo

A recurring and expensive operation in company’s warehouses is the picking. Operators who execute this activity perform repetitive physical movements and carry objects constantly, which can trigger musculoskeletal disorders. Adittionally, there is a great consumption of energy by the operators, whic...

Descripción completa

Detalles Bibliográficos
Autores: González Cáceres, Mateo Antonio, Tang Yep, Sebastian
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17465
Enlace del recurso:https://hdl.handle.net/20.500.12724/17465
Nivel de acceso:acceso abierto
Materia:Almacenes
Trabajadores
Sistemas de preparación de pedidos
Distribución comercial
Sistema musculoesquelético
Estudios de prefactibilidad
Ergonomía
Warehouses
Employees
Order picking systems
Physical distribution of goods
Musculoskeletal system
Human engineering
Prefeasibility studies
https://purl.org/pe-repo/ocde/ford#2.11.04
Descripción
Sumario:A recurring and expensive operation in company’s warehouses is the picking. Operators who execute this activity perform repetitive physical movements and carry objects constantly, which can trigger musculoskeletal disorders. Adittionally, there is a great consumption of energy by the operators, which could have negative consequences in the long term. Health damages could reduce the quality of the company’s service and productivity due to the increase in absenteeism of the personnel because of the recovery. The objective of the investigation is the application of an optimization model to reduce energy consumption during picking through the redistribution of product lines within a warehouse. The warehouse under study belongs to a Peruvian distributor with several lines of products for mass consumption. The applied model will be the one proposed by Diefenbach & Glock. The data of the current situation taken were: demand, average weights per line, efforts, distances and locations, which were coded in “A Mathematical Programming Language” (AMPL) and solved using the CPLEX solver. The results show 4.4% reduction in energy expenditure compared to the current distribution and 6.0% compared to randomly generated distributions. Finally, the optimal distribution by product lines is presented as a result of the modelling that reduces effort.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).