Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics

Descripción del Articulo

Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of se...

Descripción completa

Detalles Bibliográficos
Autor: Huancayo Ramos, Katherinne Shirley
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/12724
Enlace del recurso:https://hdl.handle.net/20.500.12724/12724
Nivel de acceso:acceso abierto
Materia:Seguridad informática
Malware (Computer software)
Computer security
Botnets
Malware (Programas de computadora)
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_a21d4ca3bdd064d93b05533cbf99ce39
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/12724
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
spellingShingle Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
Huancayo Ramos, Katherinne Shirley
Seguridad informática
Malware (Computer software)
Computer security
Botnets
Malware (Programas de computadora)
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_full Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_fullStr Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_full_unstemmed Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_sort Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
author Huancayo Ramos, Katherinne Shirley
author_facet Huancayo Ramos, Katherinne Shirley
author_role author
dc.contributor.student.none.fl_str_mv 1, OA, S
dc.contributor.advisor.fl_str_mv Sotelo Monge, Marco Antonio
dc.contributor.author.fl_str_mv Huancayo Ramos, Katherinne Shirley
dc.subject.none.fl_str_mv Seguridad informática
Malware (Computer software)
Computer security
topic Seguridad informática
Malware (Computer software)
Computer security
Botnets
Malware (Programas de computadora)
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Botnets
Malware (Programas de computadora)
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-03-17T12:35:05Z
dc.date.available.none.fl_str_mv 2021-03-17T12:35:05Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Huancayo Ramos, K. S. (2020). Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics [Tesis para optar el Título Profesional de Ingeniero de Sistemas, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/12724
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/12724
identifier_str_mv Huancayo Ramos, K. S. (2020). Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics [Tesis para optar el Título Profesional de Ingeniero de Sistemas, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/12724
url https://hdl.handle.net/20.500.12724/12724
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.es_PE.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/5/Huancayo_Ramos_Katherinne_Shirley.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/1/Huancayo_Ramos_Katherinne_Shirley.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/4/Huancayo_Ramos_Katherinne_Shirley.pdf.txt
bitstream.checksum.fl_str_mv 0574132b8484ef3a027db8ed6ccec0b6
8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
93f82f363da32d77f2a2a083e0c338a9
3038fba1478a5413ab478d2568ced8a8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844709866683236352
spelling Sotelo Monge, Marco AntonioHuancayo Ramos, Katherinne Shirley1, OA, S2021-03-17T12:35:05Z2021-03-17T12:35:05Z2020Huancayo Ramos, K. S. (2020). Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics [Tesis para optar el Título Profesional de Ingeniero de Sistemas, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/12724https://hdl.handle.net/20.500.12724/12724Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns.application/pdfspaUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASeguridad informáticaMalware (Computer software)Computer securityBotnetsMalware (Programas de computadora)https://purl.org/pe-repo/ocde/ford#2.02.04Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analyticsinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería de sistemasUniversidad de Lima. Facultad de Ingeniería y ArquitecturaIngeniero de sistemashttps://orcid.org/0000-0001-6392-02164158731361207674635102https://purl.org/pe-repo/renati/level#tituloProfesionalRodriguez-Rodriguez, Nadia-KatherineGutierrez-Cardenas, Juan-ManuelNina-Hanco, Hernanhttps://purl.org/pe-repo/renati/type#tesisOITHUMBNAILHuancayo_Ramos_Katherinne_Shirley.pdf.jpgHuancayo_Ramos_Katherinne_Shirley.pdf.jpgGenerated Thumbnailimage/jpeg10259https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/5/Huancayo_Ramos_Katherinne_Shirley.pdf.jpg0574132b8484ef3a027db8ed6ccec0b6MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52ORIGINALHuancayo_Ramos_Katherinne_Shirley.pdfHuancayo_Ramos_Katherinne_Shirley.pdfapplication/pdf742920https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/1/Huancayo_Ramos_Katherinne_Shirley.pdf93f82f363da32d77f2a2a083e0c338a9MD51TEXTHuancayo_Ramos_Katherinne_Shirley.pdf.txtHuancayo_Ramos_Katherinne_Shirley.pdf.txtExtracted texttext/plain105684https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12724/4/Huancayo_Ramos_Katherinne_Shirley.pdf.txt3038fba1478a5413ab478d2568ced8a8MD5420.500.12724/12724oai:repositorio.ulima.edu.pe:20.500.12724/127242024-11-05 15:04:06.322Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.0672035
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).