A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter

Descripción del Articulo

Cyberbullying is a social problem in which bullies’ actions are more harmful than in traditional forms of bullying as they have the power to repeatedly humiliate the victim in front of an entire community through social media. Nowadays, multiple works aim at detecting acts of cyberbullying via the a...

Descripción completa

Detalles Bibliográficos
Autores: Cuzcano Chavez, Ximena Marianne, Ayma Quirita, Victor Hugo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/12843
Enlace del recurso:https://hdl.handle.net/20.500.12724/12843
https://doi.org/10.14569/IJACSA.2020.0111018
Nivel de acceso:acceso abierto
Materia:Cyberbullying
Bullying
Ciberacoso
Blogs
Acoso moral
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_71cb4ac0c583f064af9ecae992ec0b37
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/12843
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
title A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
spellingShingle A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
Cuzcano Chavez, Ximena Marianne
Cyberbullying
Bullying
Ciberacoso
Blogs
Acoso moral
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
title_full A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
title_fullStr A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
title_full_unstemmed A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
title_sort A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter
author Cuzcano Chavez, Ximena Marianne
author_facet Cuzcano Chavez, Ximena Marianne
Ayma Quirita, Victor Hugo
author_role author
author2 Ayma Quirita, Victor Hugo
author2_role author
dc.contributor.other.none.fl_str_mv Cuzcano Chavez, Ximena Marianne
Ayma Quirita, Víctor Hugo
dc.contributor.author.fl_str_mv Cuzcano Chavez, Ximena Marianne
Ayma Quirita, Victor Hugo
dc.subject.en_EN.fl_str_mv Cyberbullying
Bullying
topic Cyberbullying
Bullying
Ciberacoso
Blogs
Acoso moral
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Ciberacoso
Blogs
Acoso moral
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Cyberbullying is a social problem in which bullies’ actions are more harmful than in traditional forms of bullying as they have the power to repeatedly humiliate the victim in front of an entire community through social media. Nowadays, multiple works aim at detecting acts of cyberbullying via the analysis of texts in social media publications written in one or more languages; however, few investigations target the cyberbullying detection in the Spanish language. In this work, we aim to compare four traditional supervised machine learning methods performances in detecting cyberbullying via the identification of four cyberbullying-related categories on Twitter posts written in the Peruvian Spanish language. Specifically, we trained and tested the Naive Bayes, Multinomial Logistic Regression, Support Vector Machines, and Random Forest classifiers upon a manually annotated dataset with the help of human participants. The results indicate that the best performing classifier for the cyberbullying detection task was the Support Vector Machine classifier.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-03-24T17:09:00Z
dc.date.available.none.fl_str_mv 2021-03-24T17:09:00Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Cuzcano, X.M. & Ayma, V.H. (2020). A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter. International Journal of Advanced Computer Science and Applications, 11(10), 132-138. https://doi.org/10.14569/IJACSA.2020.0111018
dc.identifier.issn.none.fl_str_mv 2158-107X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/12843
dc.identifier.journal.none.fl_str_mv International Journal of Advanced Computer Science and Applications
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2020.0111018
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85101642625
identifier_str_mv Cuzcano, X.M. & Ayma, V.H. (2020). A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter. International Journal of Advanced Computer Science and Applications, 11(10), 132-138. https://doi.org/10.14569/IJACSA.2020.0111018
2158-107X
International Journal of Advanced Computer Science and Applications
0000000121541816
2-s2.0-85101642625
url https://hdl.handle.net/20.500.12724/12843
https://doi.org/10.14569/IJACSA.2020.0111018
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2158-107X
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Science and Information Organization
dc.publisher.country.none.fl_str_mv GB
publisher.none.fl_str_mv Science and Information Organization
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12843/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12843/3/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1846612316360015872
spelling Cuzcano Chavez, Ximena MarianneAyma Quirita, Victor HugoCuzcano Chavez, Ximena MarianneAyma Quirita, Víctor Hugo2021-03-24T17:09:00Z2021-03-24T17:09:00Z2020Cuzcano, X.M. & Ayma, V.H. (2020). A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter. International Journal of Advanced Computer Science and Applications, 11(10), 132-138. https://doi.org/10.14569/IJACSA.2020.01110182158-107Xhttps://hdl.handle.net/20.500.12724/12843International Journal of Advanced Computer Science and Applications0000000121541816https://doi.org/10.14569/IJACSA.2020.01110182-s2.0-85101642625Cyberbullying is a social problem in which bullies’ actions are more harmful than in traditional forms of bullying as they have the power to repeatedly humiliate the victim in front of an entire community through social media. Nowadays, multiple works aim at detecting acts of cyberbullying via the analysis of texts in social media publications written in one or more languages; however, few investigations target the cyberbullying detection in the Spanish language. In this work, we aim to compare four traditional supervised machine learning methods performances in detecting cyberbullying via the identification of four cyberbullying-related categories on Twitter posts written in the Peruvian Spanish language. Specifically, we trained and tested the Naive Bayes, Multinomial Logistic Regression, Support Vector Machines, and Random Forest classifiers upon a manually annotated dataset with the help of human participants. The results indicate that the best performing classifier for the cyberbullying detection task was the Support Vector Machine classifier.application/htmlengScience and Information OrganizationGBurn:issn:2158-107Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMACyberbullyingBullyingCiberacosoBlogsAcoso moralhttps://purl.org/pe-repo/ocde/ford#2.02.04A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitterinfo:eu-repo/semantics/articleArtículo en ScopusCuzcano Chavez, Ximena Marianne (No figura en la lista del año 2020)Ayma Quirita, Victor Hugo (Ingeniería de Sistemas)Cuzcano Chavez, Ximena Marianne (Systems Engineering Department, University of Lima)Ayma Quirita, Victor Hugo (Systems Engineering Department, University of Lima)OICC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12843/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/12843/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/12843oai:repositorio.ulima.edu.pe:20.500.12724/128432025-03-06 19:40:01.62Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.057984
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).