A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter

Descripción del Articulo

Cyberbullying is a social problem in which bullies’ actions are more harmful than in traditional forms of bullying as they have the power to repeatedly humiliate the victim in front of an entire community through social media. Nowadays, multiple works aim at detecting acts of cyberbullying via the a...

Descripción completa

Detalles Bibliográficos
Autores: Cuzcano Chavez, Ximena Marianne, Ayma Quirita, Victor Hugo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/12843
Enlace del recurso:https://hdl.handle.net/20.500.12724/12843
https://doi.org/10.14569/IJACSA.2020.0111018
Nivel de acceso:acceso abierto
Materia:Cyberbullying
Bullying
Ciberacoso
Blogs
Acoso moral
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Cyberbullying is a social problem in which bullies’ actions are more harmful than in traditional forms of bullying as they have the power to repeatedly humiliate the victim in front of an entire community through social media. Nowadays, multiple works aim at detecting acts of cyberbullying via the analysis of texts in social media publications written in one or more languages; however, few investigations target the cyberbullying detection in the Spanish language. In this work, we aim to compare four traditional supervised machine learning methods performances in detecting cyberbullying via the identification of four cyberbullying-related categories on Twitter posts written in the Peruvian Spanish language. Specifically, we trained and tested the Naive Bayes, Multinomial Logistic Regression, Support Vector Machines, and Random Forest classifiers upon a manually annotated dataset with the help of human participants. The results indicate that the best performing classifier for the cyberbullying detection task was the Support Vector Machine classifier.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).