A data mining approach to guide students through the enrollment process based on academic performance
Descripción del Articulo
Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the des...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2011 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/1990 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/1990 https://doi.org/10.1007/s11257-011-9098-4 |
Nivel de acceso: | acceso abierto |
Materia: | Data mining Administración de sistemas de información |
id |
RULI_6eaa446f5bd57bb1e3130f07ebff20b6 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/1990 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
A data mining approach to guide students through the enrollment process based on academic performance |
title |
A data mining approach to guide students through the enrollment process based on academic performance |
spellingShingle |
A data mining approach to guide students through the enrollment process based on academic performance Vialardi Sacín, César Data mining Administración de sistemas de información |
title_short |
A data mining approach to guide students through the enrollment process based on academic performance |
title_full |
A data mining approach to guide students through the enrollment process based on academic performance |
title_fullStr |
A data mining approach to guide students through the enrollment process based on academic performance |
title_full_unstemmed |
A data mining approach to guide students through the enrollment process based on academic performance |
title_sort |
A data mining approach to guide students through the enrollment process based on academic performance |
author |
Vialardi Sacín, César |
author_facet |
Vialardi Sacín, César Chue Gallardo, Jorge Peche, Juan Pablo Alvarado, Gustavo Vinatea, Bruno Estrella, Jhonny Ortigosa, Álvaro |
author_role |
author |
author2 |
Chue Gallardo, Jorge Peche, Juan Pablo Alvarado, Gustavo Vinatea, Bruno Estrella, Jhonny Ortigosa, Álvaro |
author2_role |
author author author author author author |
dc.contributor.other.none.fl_str_mv |
Vialardi Sacín, César Chue Gallardo, Jorge Peche, Juan Pablo Alvarado, Gustavo Vinatea, Bruno Estrella, Jhonny |
dc.contributor.author.fl_str_mv |
Vialardi Sacín, César Chue Gallardo, Jorge Peche, Juan Pablo Alvarado, Gustavo Vinatea, Bruno Estrella, Jhonny Ortigosa, Álvaro |
dc.subject.en_EN.fl_str_mv |
Data mining |
topic |
Data mining Administración de sistemas de información |
dc.subject.es_PE.fl_str_mv |
Administración de sistemas de información |
description |
Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the design of a recommender system to support the enrollment process using the students’ academic performance record. To build this system, the CRISP-DM methodology was applied to data from students of the Computer Science Department at University of Lima, Perú. One of the main contributions of this work is the use of two synthetic attributes to improve the relevance of the recommendations made. The first attribute estimates the inherent difficulty of a given course. The second attribute, named potential, is a measure of the competence of a student for a given course based on the grades obtained in relatedcourses. Data was mined using C4.5, KNN (K-nearest neighbor), Naïve Bayes, Bagging and Boosting, and a set of experiments was developed in order to determine the best algorithm for this application domain. Results indicate that Bagging is the best method regarding predictive accuracy. Based on these results, the “Student Performance Recommender System” (SPRS) was developed, including a learning engine. SPRS was tested with a sample group of 39 students during the enrollment process. Results showed that the system had a very good performance under real-life conditions. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-4 |
dc.identifier.issn.none.fl_str_mv |
0924-1868 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/1990 |
dc.identifier.journal.none.fl_str_mv |
User Modeling and User-Adapted Interaction |
dc.identifier.eissn.none.fl_str_mv |
1573-1391 |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s11257-011-9098-4 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-79955843738 |
identifier_str_mv |
Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-4 0924-1868 User Modeling and User-Adapted Interaction 1573-1391 0000000121541816 2-s2.0-79955843738 |
url |
https://hdl.handle.net/20.500.12724/1990 https://doi.org/10.1007/s11257-011-9098-4 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1573-1391 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.country.none.fl_str_mv |
NL |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/1990/2/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1840271355116781568 |
spelling |
Vialardi Sacín, CésarChue Gallardo, JorgePeche, Juan PabloAlvarado, GustavoVinatea, BrunoEstrella, JhonnyOrtigosa, ÁlvaroVialardi Sacín, CésarChue Gallardo, JorgePeche, Juan PabloAlvarado, GustavoVinatea, BrunoEstrella, Jhonny2011Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-40924-1868https://hdl.handle.net/20.500.12724/1990User Modeling and User-Adapted Interaction1573-13910000000121541816https://doi.org/10.1007/s11257-011-9098-42-s2.0-79955843738Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the design of a recommender system to support the enrollment process using the students’ academic performance record. To build this system, the CRISP-DM methodology was applied to data from students of the Computer Science Department at University of Lima, Perú. One of the main contributions of this work is the use of two synthetic attributes to improve the relevance of the recommendations made. The first attribute estimates the inherent difficulty of a given course. The second attribute, named potential, is a measure of the competence of a student for a given course based on the grades obtained in relatedcourses. Data was mined using C4.5, KNN (K-nearest neighbor), Naïve Bayes, Bagging and Boosting, and a set of experiments was developed in order to determine the best algorithm for this application domain. Results indicate that Bagging is the best method regarding predictive accuracy. Based on these results, the “Student Performance Recommender System” (SPRS) was developed, including a learning engine. SPRS was tested with a sample group of 39 students during the enrollment process. Results showed that the system had a very good performance under real-life conditions.application/htmlengSpringerNLurn:issn:1573-1391info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAData miningAdministración de sistemas de informaciónA data mining approach to guide students through the enrollment process based on academic performanceinfo:eu-repo/semantics/articleArtículo en ScopusOILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/1990/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12724/1990oai:repositorio.ulima.edu.pe:20.500.12724/19902024-10-23 11:33:09.75Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.093635 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).