A data mining approach to guide students through the enrollment process based on academic performance

Descripción del Articulo

Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the des...

Descripción completa

Detalles Bibliográficos
Autores: Vialardi Sacín, César, Chue Gallardo, Jorge, Peche, Juan Pablo, Alvarado, Gustavo, Vinatea, Bruno, Estrella, Jhonny, Ortigosa, Álvaro
Formato: artículo
Fecha de Publicación:2011
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/1990
Enlace del recurso:https://hdl.handle.net/20.500.12724/1990
https://doi.org/10.1007/s11257-011-9098-4
Nivel de acceso:acceso abierto
Materia:Data mining
Administración de sistemas de información
id RULI_6eaa446f5bd57bb1e3130f07ebff20b6
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/1990
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv A data mining approach to guide students through the enrollment process based on academic performance
title A data mining approach to guide students through the enrollment process based on academic performance
spellingShingle A data mining approach to guide students through the enrollment process based on academic performance
Vialardi Sacín, César
Data mining
Administración de sistemas de información
title_short A data mining approach to guide students through the enrollment process based on academic performance
title_full A data mining approach to guide students through the enrollment process based on academic performance
title_fullStr A data mining approach to guide students through the enrollment process based on academic performance
title_full_unstemmed A data mining approach to guide students through the enrollment process based on academic performance
title_sort A data mining approach to guide students through the enrollment process based on academic performance
author Vialardi Sacín, César
author_facet Vialardi Sacín, César
Chue Gallardo, Jorge
Peche, Juan Pablo
Alvarado, Gustavo
Vinatea, Bruno
Estrella, Jhonny
Ortigosa, Álvaro
author_role author
author2 Chue Gallardo, Jorge
Peche, Juan Pablo
Alvarado, Gustavo
Vinatea, Bruno
Estrella, Jhonny
Ortigosa, Álvaro
author2_role author
author
author
author
author
author
dc.contributor.other.none.fl_str_mv Vialardi Sacín, César
Chue Gallardo, Jorge
Peche, Juan Pablo
Alvarado, Gustavo
Vinatea, Bruno
Estrella, Jhonny
dc.contributor.author.fl_str_mv Vialardi Sacín, César
Chue Gallardo, Jorge
Peche, Juan Pablo
Alvarado, Gustavo
Vinatea, Bruno
Estrella, Jhonny
Ortigosa, Álvaro
dc.subject.en_EN.fl_str_mv Data mining
topic Data mining
Administración de sistemas de información
dc.subject.es_PE.fl_str_mv Administración de sistemas de información
description Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the design of a recommender system to support the enrollment process using the students’ academic performance record. To build this system, the CRISP-DM methodology was applied to data from students of the Computer Science Department at University of Lima, Perú. One of the main contributions of this work is the use of two synthetic attributes to improve the relevance of the recommendations made. The first attribute estimates the inherent difficulty of a given course. The second attribute, named potential, is a measure of the competence of a student for a given course based on the grades obtained in relatedcourses. Data was mined using C4.5, KNN (K-nearest neighbor), Naïve Bayes, Bagging and Boosting, and a set of experiments was developed in order to determine the best algorithm for this application domain. Results indicate that Bagging is the best method regarding predictive accuracy. Based on these results, the “Student Performance Recommender System” (SPRS) was developed, including a learning engine. SPRS was tested with a sample group of 39 students during the enrollment process. Results showed that the system had a very good performance under real-life conditions.
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-4
dc.identifier.issn.none.fl_str_mv 0924-1868
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/1990
dc.identifier.journal.none.fl_str_mv User Modeling and User-Adapted Interaction
dc.identifier.eissn.none.fl_str_mv 1573-1391
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s11257-011-9098-4
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-79955843738
identifier_str_mv Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-4
0924-1868
User Modeling and User-Adapted Interaction
1573-1391
0000000121541816
2-s2.0-79955843738
url https://hdl.handle.net/20.500.12724/1990
https://doi.org/10.1007/s11257-011-9098-4
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1573-1391
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Springer
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/1990/2/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1840271355116781568
spelling Vialardi Sacín, CésarChue Gallardo, JorgePeche, Juan PabloAlvarado, GustavoVinatea, BrunoEstrella, JhonnyOrtigosa, ÁlvaroVialardi Sacín, CésarChue Gallardo, JorgePeche, Juan PabloAlvarado, GustavoVinatea, BrunoEstrella, Jhonny2011Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-40924-1868https://hdl.handle.net/20.500.12724/1990User Modeling and User-Adapted Interaction1573-13910000000121541816https://doi.org/10.1007/s11257-011-9098-42-s2.0-79955843738Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the design of a recommender system to support the enrollment process using the students’ academic performance record. To build this system, the CRISP-DM methodology was applied to data from students of the Computer Science Department at University of Lima, Perú. One of the main contributions of this work is the use of two synthetic attributes to improve the relevance of the recommendations made. The first attribute estimates the inherent difficulty of a given course. The second attribute, named potential, is a measure of the competence of a student for a given course based on the grades obtained in relatedcourses. Data was mined using C4.5, KNN (K-nearest neighbor), Naïve Bayes, Bagging and Boosting, and a set of experiments was developed in order to determine the best algorithm for this application domain. Results indicate that Bagging is the best method regarding predictive accuracy. Based on these results, the “Student Performance Recommender System” (SPRS) was developed, including a learning engine. SPRS was tested with a sample group of 39 students during the enrollment process. Results showed that the system had a very good performance under real-life conditions.application/htmlengSpringerNLurn:issn:1573-1391info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAData miningAdministración de sistemas de informaciónA data mining approach to guide students through the enrollment process based on academic performanceinfo:eu-repo/semantics/articleArtículo en ScopusOILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/1990/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12724/1990oai:repositorio.ulima.edu.pe:20.500.12724/19902024-10-23 11:33:09.75Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.093635
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).