A data mining approach to guide students through the enrollment process based on academic performance
Descripción del Articulo
Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the des...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2011 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/1990 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/1990 https://doi.org/10.1007/s11257-011-9098-4 |
Nivel de acceso: | acceso abierto |
Materia: | Data mining Administración de sistemas de información |
Sumario: | Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the design of a recommender system to support the enrollment process using the students’ academic performance record. To build this system, the CRISP-DM methodology was applied to data from students of the Computer Science Department at University of Lima, Perú. One of the main contributions of this work is the use of two synthetic attributes to improve the relevance of the recommendations made. The first attribute estimates the inherent difficulty of a given course. The second attribute, named potential, is a measure of the competence of a student for a given course based on the grades obtained in relatedcourses. Data was mined using C4.5, KNN (K-nearest neighbor), Naïve Bayes, Bagging and Boosting, and a set of experiments was developed in order to determine the best algorithm for this application domain. Results indicate that Bagging is the best method regarding predictive accuracy. Based on these results, the “Student Performance Recommender System” (SPRS) was developed, including a learning engine. SPRS was tested with a sample group of 39 students during the enrollment process. Results showed that the system had a very good performance under real-life conditions. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).