Management model for productivity improvement in the craft beer production process through the application of demand planning techniques, EOQ and MRP

Descripción del Articulo

The craft beer industry has developed in the Peruvian market by 2023, representing sales of 2.33 billion; However, its productivity rate of 12% is still low compared to the industry's average productivity of 55%. Among the causes of the problem, the lack of a production plan and a demand foreca...

Descripción completa

Detalles Bibliográficos
Autores: Negron Aching, Jimena, Portocarrero Davila, Giovanna Fiorella
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/23450
Enlace del recurso:https://hdl.handle.net/20.500.12724/23450
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
Descripción
Sumario:The craft beer industry has developed in the Peruvian market by 2023, representing sales of 2.33 billion; However, its productivity rate of 12% is still low compared to the industry's average productivity of 55%. Among the causes of the problem, the lack of a production plan and a demand forecasting system was identified; Therefore, the objective of this study is to develop a forecast model for the demand for beer and the economic order quantity of raw materials to develop an adequate production and supply plan to increase productivity in the study company. The Winters demand forecast model was selected by analyzing the mean absolute percentage forecast error (MAPE) indicator of 9.4%, assuming +/- 10% MAPE as a limit and the similarity of the model's behavior with respect to the historical demand of the company. The proposed model was validated through simulations using software in Excel and @Risk. The research has shown a 48% increase in productivity compared to the initial value, achieving an increase of 3’905,656 PEN in the income of the craft beer company investigated.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).