Survey of text mining techniques applied to Judicial decisions prediction

Descripción del Articulo

This paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are...

Descripción completa

Detalles Bibliográficos
Autores: Alcántara Francia, Olga Alejandra, Nunez-del-Prado, Miguel, Alatrista-Salas, Hugo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17618
Enlace del recurso:https://hdl.handle.net/20.500.12724/17618
https://doi.org/10.3390/app122010200
Nivel de acceso:acceso abierto
Materia:Text data mining
Judicial opinions
Judicial process
Algorithms
Machine learning
Deep learning (Machine learning)
Natural language processing (Computer science)
https://purl.org/pe-repo/ocde/ford#5.05.01
id RULI_20497daf5a7c21159bf26fbff7125656
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17618
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Survey of text mining techniques applied to Judicial decisions prediction
title Survey of text mining techniques applied to Judicial decisions prediction
spellingShingle Survey of text mining techniques applied to Judicial decisions prediction
Alcántara Francia, Olga Alejandra
Text data mining
Judicial opinions
Judicial process
Algorithms
Machine learning
Deep learning (Machine learning)
Natural language processing (Computer science)
https://purl.org/pe-repo/ocde/ford#5.05.01
title_short Survey of text mining techniques applied to Judicial decisions prediction
title_full Survey of text mining techniques applied to Judicial decisions prediction
title_fullStr Survey of text mining techniques applied to Judicial decisions prediction
title_full_unstemmed Survey of text mining techniques applied to Judicial decisions prediction
title_sort Survey of text mining techniques applied to Judicial decisions prediction
author Alcántara Francia, Olga Alejandra
author_facet Alcántara Francia, Olga Alejandra
Nunez-del-Prado, Miguel
Alatrista-Salas, Hugo
author_role author
author2 Nunez-del-Prado, Miguel
Alatrista-Salas, Hugo
author2_role author
author
dc.contributor.other.none.fl_str_mv Alcántara Francia, Olga Alejandra
dc.contributor.author.fl_str_mv Alcántara Francia, Olga Alejandra
Nunez-del-Prado, Miguel
Alatrista-Salas, Hugo
dc.subject.en_EN.fl_str_mv Text data mining
Judicial opinions
Judicial process
Algorithms
Machine learning
Deep learning (Machine learning)
Natural language processing (Computer science)
topic Text data mining
Judicial opinions
Judicial process
Algorithms
Machine learning
Deep learning (Machine learning)
Natural language processing (Computer science)
https://purl.org/pe-repo/ocde/ford#5.05.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.05.01
description This paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are Support Vector Machine (SVM), K Nearest Neighbours (K-NN) and Random Forest (RF), and in terms of the most used deep learning techniques, we found Long-Term Memory (LSTM) and transformers such as BERT. An important finding in the papers reviewed was that the use of machine learning techniques has prevailed over those of deep learning. Regarding the place of origin of the research carried out, we found that 64% of the works belong to studies carried out in English-speaking countries, 8% in Portuguese and 28% in other languages (such as German, Chinese, Turkish, Spanish, etc.). Very few works of this type have been carried out in Spanish-speaking countries. The classification criteria of the works have been based, on the one hand, on the identification of the classifiers used to predict situations (or events with legal interference) or judicial decisions and, on the other hand, on the application of classifiers to the phenomena regulated by the different branches of law: criminal, constitutional, human rights, administrative, intellectual property, family law, tax law and others. The corpus size analyzed in the reviewed works reached 100,000 documents in 2020. Finally, another important finding lies in the accuracy of these predictive techniques, reaching predictions of over 60% in different branches of law.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-02-13T17:37:58Z
dc.date.available.none.fl_str_mv 2023-02-13T17:37:58Z
dc.date.issued.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Alcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app122010200
dc.identifier.issn.none.fl_str_mv 2076-3417
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17618
dc.identifier.journal.none.fl_str_mv Applied Sciences
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/app122010200
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85140488281
identifier_str_mv Alcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app122010200
2076-3417
Applied Sciences
0000000121541816
2-s2.0-85140488281
url https://hdl.handle.net/20.500.12724/17618
https://doi.org/10.3390/app122010200
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn: 2076-3417
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/3/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977493223243776
spelling Alcántara Francia, Olga AlejandraNunez-del-Prado, MiguelAlatrista-Salas, HugoAlcántara Francia, Olga Alejandra2023-02-13T17:37:58Z2023-02-13T17:37:58Z2022Alcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app1220102002076-3417https://hdl.handle.net/20.500.12724/17618Applied Sciences0000000121541816https://doi.org/10.3390/app1220102002-s2.0-85140488281This paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are Support Vector Machine (SVM), K Nearest Neighbours (K-NN) and Random Forest (RF), and in terms of the most used deep learning techniques, we found Long-Term Memory (LSTM) and transformers such as BERT. An important finding in the papers reviewed was that the use of machine learning techniques has prevailed over those of deep learning. Regarding the place of origin of the research carried out, we found that 64% of the works belong to studies carried out in English-speaking countries, 8% in Portuguese and 28% in other languages (such as German, Chinese, Turkish, Spanish, etc.). Very few works of this type have been carried out in Spanish-speaking countries. The classification criteria of the works have been based, on the one hand, on the identification of the classifiers used to predict situations (or events with legal interference) or judicial decisions and, on the other hand, on the application of classifiers to the phenomena regulated by the different branches of law: criminal, constitutional, human rights, administrative, intellectual property, family law, tax law and others. The corpus size analyzed in the reviewed works reached 100,000 documents in 2020. Finally, another important finding lies in the accuracy of these predictive techniques, reaching predictions of over 60% in different branches of law.application/htmlspaMultidisciplinary Digital Publishing Institute (MDPI)CHurn:issn: 2076-3417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAText data miningJudicial opinionsJudicial processAlgorithmsMachine learningDeep learning (Machine learning)Natural language processing (Computer science)https://purl.org/pe-repo/ocde/ford#5.05.01Survey of text mining techniques applied to Judicial decisions predictioninfo:eu-repo/semantics/articleArtículo en ScopusDerechoFaculty of Law, Universidad de LimaOICC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/17618oai:repositorio.ulima.edu.pe:20.500.12724/176182025-09-04 15:05:38.06Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.035174
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).