Survey of text mining techniques applied to Judicial decisions prediction
Descripción del Articulo
This paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17618 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/17618 https://doi.org/10.3390/app122010200 |
Nivel de acceso: | acceso abierto |
Materia: | Text data mining Judicial opinions Judicial process Algorithms Machine learning Deep learning (Machine learning) Natural language processing (Computer science) https://purl.org/pe-repo/ocde/ford#5.05.01 |
id |
RULI_20497daf5a7c21159bf26fbff7125656 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17618 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
Survey of text mining techniques applied to Judicial decisions prediction |
title |
Survey of text mining techniques applied to Judicial decisions prediction |
spellingShingle |
Survey of text mining techniques applied to Judicial decisions prediction Alcántara Francia, Olga Alejandra Text data mining Judicial opinions Judicial process Algorithms Machine learning Deep learning (Machine learning) Natural language processing (Computer science) https://purl.org/pe-repo/ocde/ford#5.05.01 |
title_short |
Survey of text mining techniques applied to Judicial decisions prediction |
title_full |
Survey of text mining techniques applied to Judicial decisions prediction |
title_fullStr |
Survey of text mining techniques applied to Judicial decisions prediction |
title_full_unstemmed |
Survey of text mining techniques applied to Judicial decisions prediction |
title_sort |
Survey of text mining techniques applied to Judicial decisions prediction |
author |
Alcántara Francia, Olga Alejandra |
author_facet |
Alcántara Francia, Olga Alejandra Nunez-del-Prado, Miguel Alatrista-Salas, Hugo |
author_role |
author |
author2 |
Nunez-del-Prado, Miguel Alatrista-Salas, Hugo |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
Alcántara Francia, Olga Alejandra |
dc.contributor.author.fl_str_mv |
Alcántara Francia, Olga Alejandra Nunez-del-Prado, Miguel Alatrista-Salas, Hugo |
dc.subject.en_EN.fl_str_mv |
Text data mining Judicial opinions Judicial process Algorithms Machine learning Deep learning (Machine learning) Natural language processing (Computer science) |
topic |
Text data mining Judicial opinions Judicial process Algorithms Machine learning Deep learning (Machine learning) Natural language processing (Computer science) https://purl.org/pe-repo/ocde/ford#5.05.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.05.01 |
description |
This paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are Support Vector Machine (SVM), K Nearest Neighbours (K-NN) and Random Forest (RF), and in terms of the most used deep learning techniques, we found Long-Term Memory (LSTM) and transformers such as BERT. An important finding in the papers reviewed was that the use of machine learning techniques has prevailed over those of deep learning. Regarding the place of origin of the research carried out, we found that 64% of the works belong to studies carried out in English-speaking countries, 8% in Portuguese and 28% in other languages (such as German, Chinese, Turkish, Spanish, etc.). Very few works of this type have been carried out in Spanish-speaking countries. The classification criteria of the works have been based, on the one hand, on the identification of the classifiers used to predict situations (or events with legal interference) or judicial decisions and, on the other hand, on the application of classifiers to the phenomena regulated by the different branches of law: criminal, constitutional, human rights, administrative, intellectual property, family law, tax law and others. The corpus size analyzed in the reviewed works reached 100,000 documents in 2020. Finally, another important finding lies in the accuracy of these predictive techniques, reaching predictions of over 60% in different branches of law. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-02-13T17:37:58Z |
dc.date.available.none.fl_str_mv |
2023-02-13T17:37:58Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Alcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app122010200 |
dc.identifier.issn.none.fl_str_mv |
2076-3417 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17618 |
dc.identifier.journal.none.fl_str_mv |
Applied Sciences |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/app122010200 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85140488281 |
identifier_str_mv |
Alcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app122010200 2076-3417 Applied Sciences 0000000121541816 2-s2.0-85140488281 |
url |
https://hdl.handle.net/20.500.12724/17618 https://doi.org/10.3390/app122010200 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2076-3417 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.country.none.fl_str_mv |
CH |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/2/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/3/license.txt |
bitstream.checksum.fl_str_mv |
8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977493223243776 |
spelling |
Alcántara Francia, Olga AlejandraNunez-del-Prado, MiguelAlatrista-Salas, HugoAlcántara Francia, Olga Alejandra2023-02-13T17:37:58Z2023-02-13T17:37:58Z2022Alcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app1220102002076-3417https://hdl.handle.net/20.500.12724/17618Applied Sciences0000000121541816https://doi.org/10.3390/app1220102002-s2.0-85140488281This paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are Support Vector Machine (SVM), K Nearest Neighbours (K-NN) and Random Forest (RF), and in terms of the most used deep learning techniques, we found Long-Term Memory (LSTM) and transformers such as BERT. An important finding in the papers reviewed was that the use of machine learning techniques has prevailed over those of deep learning. Regarding the place of origin of the research carried out, we found that 64% of the works belong to studies carried out in English-speaking countries, 8% in Portuguese and 28% in other languages (such as German, Chinese, Turkish, Spanish, etc.). Very few works of this type have been carried out in Spanish-speaking countries. The classification criteria of the works have been based, on the one hand, on the identification of the classifiers used to predict situations (or events with legal interference) or judicial decisions and, on the other hand, on the application of classifiers to the phenomena regulated by the different branches of law: criminal, constitutional, human rights, administrative, intellectual property, family law, tax law and others. The corpus size analyzed in the reviewed works reached 100,000 documents in 2020. Finally, another important finding lies in the accuracy of these predictive techniques, reaching predictions of over 60% in different branches of law.application/htmlspaMultidisciplinary Digital Publishing Institute (MDPI)CHurn:issn: 2076-3417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAText data miningJudicial opinionsJudicial processAlgorithmsMachine learningDeep learning (Machine learning)Natural language processing (Computer science)https://purl.org/pe-repo/ocde/ford#5.05.01Survey of text mining techniques applied to Judicial decisions predictioninfo:eu-repo/semantics/articleArtículo en ScopusDerechoFaculty of Law, Universidad de LimaOICC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17618/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/17618oai:repositorio.ulima.edu.pe:20.500.12724/176182025-09-04 15:05:38.06Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.035174 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).