Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
Descripción del Articulo
The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonst...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17993 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/17993 https://doi.org/10.14445/22315381/IJETT-V71I2P205 |
| Nivel de acceso: | acceso abierto |
| Materia: | Sales forecasting Poultry industry Machine learning Time-series analysis Supply chain management Data mining Food industry and trade Perishable goods Inventory control Supply and demand https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
RULI_1d26e129c8ee44946ee7c343df4ed164 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17993 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.en_EN.fl_str_mv |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| title |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| spellingShingle |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company Garcia Arismendiz, Joaquin Antonio Sales forecasting Poultry industry Machine learning Time-series analysis Supply chain management Data mining Food industry and trade Perishable goods Inventory control Supply and demand https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| title_full |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| title_fullStr |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| title_full_unstemmed |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| title_sort |
Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company |
| author |
Garcia Arismendiz, Joaquin Antonio |
| author_facet |
Garcia Arismendiz, Joaquin Antonio Huertas Zúñiga, Sandra Larissa Lizárraga Portugal, Carlos Augusto Quiroz Flores, Juan Carlos García López, Yván Jesús |
| author_role |
author |
| author2 |
Huertas Zúñiga, Sandra Larissa Lizárraga Portugal, Carlos Augusto Quiroz Flores, Juan Carlos García López, Yván Jesús |
| author2_role |
author author author author |
| dc.contributor.other.none.fl_str_mv |
Lizárraga Portugal, Carlos Augusto Quiroz Flores, Juan Carlos García López, Yván Jesús |
| dc.contributor.student.none.fl_str_mv |
Huertas Zúñiga, Sandra Larissa (Ingeniería Industrial) Garcia Arismendiz, Joaquin Antonio (Ingeniería Industrial) |
| dc.contributor.author.fl_str_mv |
Garcia Arismendiz, Joaquin Antonio Huertas Zúñiga, Sandra Larissa Lizárraga Portugal, Carlos Augusto Quiroz Flores, Juan Carlos García López, Yván Jesús |
| dc.subject.en_EN.fl_str_mv |
Sales forecasting Poultry industry Machine learning Time-series analysis Supply chain management Data mining Food industry and trade Perishable goods Inventory control Supply and demand |
| topic |
Sales forecasting Poultry industry Machine learning Time-series analysis Supply chain management Data mining Food industry and trade Perishable goods Inventory control Supply and demand https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-03-28T16:51:56Z |
| dc.date.available.none.fl_str_mv |
2023-03-28T16:51:56Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo en Scopus |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P205 |
| dc.identifier.issn.none.fl_str_mv |
2349-0918 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17993 |
| dc.identifier.journal.none.fl_str_mv |
International Journal of Engineering Trends and Technology |
| dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14445/22315381/IJETT-V71I2P205 |
| dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85149152578 |
| identifier_str_mv |
Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P205 2349-0918 International Journal of Engineering Trends and Technology 0000000121541816 2-s2.0-85149152578 |
| url |
https://hdl.handle.net/20.500.12724/17993 https://doi.org/10.14445/22315381/IJETT-V71I2P205 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2349-0918 |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/html |
| dc.publisher.none.fl_str_mv |
Seventh Sense Research Group |
| dc.publisher.country.none.fl_str_mv |
IN |
| publisher.none.fl_str_mv |
Seventh Sense Research Group |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/2/license_rdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1851051106471247872 |
| spelling |
Garcia Arismendiz, Joaquin AntonioHuertas Zúñiga, Sandra LarissaLizárraga Portugal, Carlos AugustoQuiroz Flores, Juan CarlosGarcía López, Yván JesúsLizárraga Portugal, Carlos AugustoQuiroz Flores, Juan CarlosGarcía López, Yván JesúsHuertas Zúñiga, Sandra Larissa (Ingeniería Industrial)Garcia Arismendiz, Joaquin Antonio (Ingeniería Industrial)2023-03-28T16:51:56Z2023-03-28T16:51:56Z2023Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P2052349-0918https://hdl.handle.net/20.500.12724/17993International Journal of Engineering Trends and Technology0000000121541816https://doi.org/10.14445/22315381/IJETT-V71I2P2052-s2.0-85149152578The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others.application/htmlengSeventh Sense Research GroupINurn:issn: 2349-0918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASales forecastingPoultry industryMachine learningTime-series analysisSupply chain managementData miningFood industry and tradePerishable goodsInventory controlSupply and demandhttps://purl.org/pe-repo/ocde/ford#2.11.04Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Companyinfo:eu-repo/semantics/articleArtículo en ScopusLizárraga Portugal, Carlos Augusto (Ingeniería Industrial)Quiroz Flores, Juan Carlos (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)Lizárraga Portugal, Carlos Augusto (Facultad de Ingeniería y Arquitectura, Universidad de Lima)Quiroz Flores, Juan Carlos (Facultad de Ingeniería y Arquitectura, Universidad de Lima)García López, Yván Jesús (Facultad de Ingeniería y Arquitectura, Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/17993oai:repositorio.ulima.edu.pe:20.500.12724/179932025-08-20 17:18:12.926Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
12.785959 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).