Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company

Descripción del Articulo

The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonst...

Descripción completa

Detalles Bibliográficos
Autores: Garcia Arismendiz, Joaquin Antonio, Huertas Zúñiga, Sandra Larissa, Lizárraga Portugal, Carlos Augusto, Quiroz Flores, Juan Carlos, García López, Yván Jesús
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17993
Enlace del recurso:https://hdl.handle.net/20.500.12724/17993
https://doi.org/10.14445/22315381/IJETT-V71I2P205
Nivel de acceso:acceso abierto
Materia:Sales forecasting
Poultry industry
Machine learning
Time-series analysis
Supply chain management
Data mining
Food industry and trade
Perishable goods
Inventory control
Supply and demand
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_1d26e129c8ee44946ee7c343df4ed164
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17993
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
title Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
spellingShingle Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
Garcia Arismendiz, Joaquin Antonio
Sales forecasting
Poultry industry
Machine learning
Time-series analysis
Supply chain management
Data mining
Food industry and trade
Perishable goods
Inventory control
Supply and demand
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
title_full Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
title_fullStr Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
title_full_unstemmed Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
title_sort Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company
author Garcia Arismendiz, Joaquin Antonio
author_facet Garcia Arismendiz, Joaquin Antonio
Huertas Zúñiga, Sandra Larissa
Lizárraga Portugal, Carlos Augusto
Quiroz Flores, Juan Carlos
García López, Yván Jesús
author_role author
author2 Huertas Zúñiga, Sandra Larissa
Lizárraga Portugal, Carlos Augusto
Quiroz Flores, Juan Carlos
García López, Yván Jesús
author2_role author
author
author
author
dc.contributor.other.none.fl_str_mv Lizárraga Portugal, Carlos Augusto
Quiroz Flores, Juan Carlos
García López, Yván Jesús
dc.contributor.student.none.fl_str_mv Huertas Zúñiga, Sandra Larissa (Ingeniería Industrial)
Garcia Arismendiz, Joaquin Antonio (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Garcia Arismendiz, Joaquin Antonio
Huertas Zúñiga, Sandra Larissa
Lizárraga Portugal, Carlos Augusto
Quiroz Flores, Juan Carlos
García López, Yván Jesús
dc.subject.en_EN.fl_str_mv Sales forecasting
Poultry industry
Machine learning
Time-series analysis
Supply chain management
Data mining
Food industry and trade
Perishable goods
Inventory control
Supply and demand
topic Sales forecasting
Poultry industry
Machine learning
Time-series analysis
Supply chain management
Data mining
Food industry and trade
Perishable goods
Inventory control
Supply and demand
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-28T16:51:56Z
dc.date.available.none.fl_str_mv 2023-03-28T16:51:56Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P205
dc.identifier.issn.none.fl_str_mv 2349-0918
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17993
dc.identifier.journal.none.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/22315381/IJETT-V71I2P205
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85149152578
identifier_str_mv Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P205
2349-0918
International Journal of Engineering Trends and Technology
0000000121541816
2-s2.0-85149152578
url https://hdl.handle.net/20.500.12724/17993
https://doi.org/10.14445/22315381/IJETT-V71I2P205
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2349-0918
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Seventh Sense Research Group
dc.publisher.country.none.fl_str_mv IN
publisher.none.fl_str_mv Seventh Sense Research Group
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1851051106471247872
spelling Garcia Arismendiz, Joaquin AntonioHuertas Zúñiga, Sandra LarissaLizárraga Portugal, Carlos AugustoQuiroz Flores, Juan CarlosGarcía López, Yván JesúsLizárraga Portugal, Carlos AugustoQuiroz Flores, Juan CarlosGarcía López, Yván JesúsHuertas Zúñiga, Sandra Larissa (Ingeniería Industrial)Garcia Arismendiz, Joaquin Antonio (Ingeniería Industrial)2023-03-28T16:51:56Z2023-03-28T16:51:56Z2023Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P2052349-0918https://hdl.handle.net/20.500.12724/17993International Journal of Engineering Trends and Technology0000000121541816https://doi.org/10.14445/22315381/IJETT-V71I2P2052-s2.0-85149152578The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others.application/htmlengSeventh Sense Research GroupINurn:issn: 2349-0918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASales forecastingPoultry industryMachine learningTime-series analysisSupply chain managementData miningFood industry and tradePerishable goodsInventory controlSupply and demandhttps://purl.org/pe-repo/ocde/ford#2.11.04Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Companyinfo:eu-repo/semantics/articleArtículo en ScopusLizárraga Portugal, Carlos Augusto (Ingeniería Industrial)Quiroz Flores, Juan Carlos (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)Lizárraga Portugal, Carlos Augusto (Facultad de Ingeniería y Arquitectura, Universidad de Lima)Quiroz Flores, Juan Carlos (Facultad de Ingeniería y Arquitectura, Universidad de Lima)García López, Yván Jesús (Facultad de Ingeniería y Arquitectura, Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17993/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/17993oai:repositorio.ulima.edu.pe:20.500.12724/179932025-08-20 17:18:12.926Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.785959
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).