Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company

Descripción del Articulo

The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonst...

Descripción completa

Detalles Bibliográficos
Autores: Garcia Arismendiz, Joaquin Antonio, Huertas Zúñiga, Sandra Larissa, Lizárraga Portugal, Carlos Augusto, Quiroz Flores, Juan Carlos, García López, Yván Jesús
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17993
Enlace del recurso:https://hdl.handle.net/20.500.12724/17993
https://doi.org/10.14445/22315381/IJETT-V71I2P205
Nivel de acceso:acceso abierto
Materia:Sales forecasting
Poultry industry
Machine learning
Time-series analysis
Supply chain management
Data mining
Food industry and trade
Perishable goods
Inventory control
Supply and demand
https://purl.org/pe-repo/ocde/ford#2.11.04
Descripción
Sumario:The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).