An explainable machine learning model to optimize demand forecasting in Company DEOS
Descripción del Articulo
Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understan...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/18455 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/18455 |
Nivel de acceso: | acceso abierto |
Materia: | Aprendizaje automático Pronósticos económicos Machine learning Economic forecasting https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_096039404764a9530211d80fe21c4ee8 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/18455 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
title |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
spellingShingle |
An explainable machine learning model to optimize demand forecasting in Company DEOS Cabrera Feijoo, Gianella Valeria Aprendizaje automático Pronósticos económicos Machine learning Economic forecasting https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
title_full |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
title_fullStr |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
title_full_unstemmed |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
title_sort |
An explainable machine learning model to optimize demand forecasting in Company DEOS |
author |
Cabrera Feijoo, Gianella Valeria |
author_facet |
Cabrera Feijoo, Gianella Valeria Germana Valverde, Jimena Mariana |
author_role |
author |
author2 |
Germana Valverde, Jimena Mariana |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
García López, Yván Jesús |
dc.contributor.author.fl_str_mv |
Cabrera Feijoo, Gianella Valeria Germana Valverde, Jimena Mariana |
dc.subject.es_PE.fl_str_mv |
Aprendizaje automático Pronósticos económicos Machine learning Economic forecasting |
topic |
Aprendizaje automático Pronósticos económicos Machine learning Economic forecasting https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias). |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-03T15:23:28Z |
dc.date.available.none.fl_str_mv |
2023-07-03T15:23:28Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.other.none.fl_str_mv |
Tesis |
format |
bachelorThesis |
dc.identifier.citation.es_PE.fl_str_mv |
Cabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/18455 |
dc.identifier.isni.none.fl_str_mv |
121541816 |
identifier_str_mv |
Cabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455 121541816 |
url |
https://hdl.handle.net/20.500.12724/18455 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/4/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/7/T018_74124685_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/9/FA_74124685_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/11/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/6/T018_74124685_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/8/FA_74124685_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/10/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/1/T018_74124685_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/2/FA_74124685_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/3/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/5/license.txt |
bitstream.checksum.fl_str_mv |
8fc46f5e71650fd7adee84a69b9163c2 0274869e1d940fe46404f17fe91609af fa9904b7c07a58ffc24e6f8289579bf8 498f75e09bde7ba3c071eb2789091cfc b93d6677193b9db6b8e0cd56915a97fe e38493515f4f9b0b0b5eab2b236052b8 be811facda17f33b863d3d2716a2c24d 3f4fb118e6a596e45061853a5536ac32 d29d055690b91295a44fe94a5e47af19 691faa98e9ed8d8d1d5dcb8cf3f727ce 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1846612291522396160 |
spelling |
García López, Yván JesúsCabrera Feijoo, Gianella ValeriaGermana Valverde, Jimena Mariana2023-07-03T15:23:28Z2023-07-03T15:23:28Z2023Cabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455https://hdl.handle.net/20.500.12724/18455121541816Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias).application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAprendizaje automáticoPronósticos económicosMachine learningEconomic forecastinghttps://purl.org/pe-repo/ocde/ford#2.11.04An explainable machine learning model to optimize demand forecasting in Company DEOSinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de Ingeniería y ArquitecturaIngeniero Industrialhttps://orcid.org/0000-0001-9577-418860744537220267412468570452360https://purl.org/pe-repo/renati/level#tituloProfesionalFlores Pérez, Alberto EnriqueQuiroz Flores, Juan CarlosGarcía López, Yván Jesúshttps://purl.org/pe-repo/renati/type#tesisOICC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/4/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD54THUMBNAILT018_74124685_T.pdf.jpgT018_74124685_T.pdf.jpgGenerated Thumbnailimage/jpeg11296https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/7/T018_74124685_T.pdf.jpg0274869e1d940fe46404f17fe91609afMD57FA_74124685_SR.pdf.jpgFA_74124685_SR.pdf.jpgGenerated Thumbnailimage/jpeg16380https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/9/FA_74124685_SR.pdf.jpgfa9904b7c07a58ffc24e6f8289579bf8MD59TURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.jpgTURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.jpgGenerated Thumbnailimage/jpeg6954https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/11/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.jpg498f75e09bde7ba3c071eb2789091cfcMD511TEXTT018_74124685_T.pdf.txtT018_74124685_T.pdf.txtExtracted texttext/plain36834https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/6/T018_74124685_T.pdf.txtb93d6677193b9db6b8e0cd56915a97feMD56FA_74124685_SR.pdf.txtFA_74124685_SR.pdf.txtExtracted texttext/plain2622https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/8/FA_74124685_SR.pdf.txte38493515f4f9b0b0b5eab2b236052b8MD58TURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.txtTURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.txtExtracted texttext/plain711https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/10/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.txtbe811facda17f33b863d3d2716a2c24dMD510ORIGINALT018_74124685_T.pdfT018_74124685_T.pdfTesisapplication/pdf608352https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/1/T018_74124685_T.pdf3f4fb118e6a596e45061853a5536ac32MD51FA_74124685_SR.pdfFA_74124685_SR.pdfAutorizaciónapplication/pdf262774https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/2/FA_74124685_SR.pdfd29d055690b91295a44fe94a5e47af19MD52TURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdfTURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdfReporte de similitudapplication/pdf2666286https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/3/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf691faa98e9ed8d8d1d5dcb8cf3f727ceMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5520.500.12724/18455oai:repositorio.ulima.edu.pe:20.500.12724/184552025-09-18 12:48:25.667Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.884314 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).