An explainable machine learning model to optimize demand forecasting in Company DEOS

Descripción del Articulo

Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understan...

Descripción completa

Detalles Bibliográficos
Autores: Cabrera Feijoo, Gianella Valeria, Germana Valverde, Jimena Mariana
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/18455
Enlace del recurso:https://hdl.handle.net/20.500.12724/18455
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Pronósticos económicos
Machine learning
Economic forecasting
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_096039404764a9530211d80fe21c4ee8
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/18455
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv An explainable machine learning model to optimize demand forecasting in Company DEOS
title An explainable machine learning model to optimize demand forecasting in Company DEOS
spellingShingle An explainable machine learning model to optimize demand forecasting in Company DEOS
Cabrera Feijoo, Gianella Valeria
Aprendizaje automático
Pronósticos económicos
Machine learning
Economic forecasting
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short An explainable machine learning model to optimize demand forecasting in Company DEOS
title_full An explainable machine learning model to optimize demand forecasting in Company DEOS
title_fullStr An explainable machine learning model to optimize demand forecasting in Company DEOS
title_full_unstemmed An explainable machine learning model to optimize demand forecasting in Company DEOS
title_sort An explainable machine learning model to optimize demand forecasting in Company DEOS
author Cabrera Feijoo, Gianella Valeria
author_facet Cabrera Feijoo, Gianella Valeria
Germana Valverde, Jimena Mariana
author_role author
author2 Germana Valverde, Jimena Mariana
author2_role author
dc.contributor.advisor.fl_str_mv García López, Yván Jesús
dc.contributor.author.fl_str_mv Cabrera Feijoo, Gianella Valeria
Germana Valverde, Jimena Mariana
dc.subject.es_PE.fl_str_mv Aprendizaje automático
Pronósticos económicos
Machine learning
Economic forecasting
topic Aprendizaje automático
Pronósticos económicos
Machine learning
Economic forecasting
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias).
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-03T15:23:28Z
dc.date.available.none.fl_str_mv 2023-07-03T15:23:28Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Cabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/18455
dc.identifier.isni.none.fl_str_mv 121541816
identifier_str_mv Cabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455
121541816
url https://hdl.handle.net/20.500.12724/18455
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/4/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/7/T018_74124685_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/9/FA_74124685_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/11/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/6/T018_74124685_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/8/FA_74124685_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/10/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/1/T018_74124685_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/2/FA_74124685_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/3/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/5/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
0274869e1d940fe46404f17fe91609af
fa9904b7c07a58ffc24e6f8289579bf8
498f75e09bde7ba3c071eb2789091cfc
b93d6677193b9db6b8e0cd56915a97fe
e38493515f4f9b0b0b5eab2b236052b8
be811facda17f33b863d3d2716a2c24d
3f4fb118e6a596e45061853a5536ac32
d29d055690b91295a44fe94a5e47af19
691faa98e9ed8d8d1d5dcb8cf3f727ce
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1846612291522396160
spelling García López, Yván JesúsCabrera Feijoo, Gianella ValeriaGermana Valverde, Jimena Mariana2023-07-03T15:23:28Z2023-07-03T15:23:28Z2023Cabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455https://hdl.handle.net/20.500.12724/18455121541816Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias).application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAprendizaje automáticoPronósticos económicosMachine learningEconomic forecastinghttps://purl.org/pe-repo/ocde/ford#2.11.04An explainable machine learning model to optimize demand forecasting in Company DEOSinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de Ingeniería y ArquitecturaIngeniero Industrialhttps://orcid.org/0000-0001-9577-418860744537220267412468570452360https://purl.org/pe-repo/renati/level#tituloProfesionalFlores Pérez, Alberto EnriqueQuiroz Flores, Juan CarlosGarcía López, Yván Jesúshttps://purl.org/pe-repo/renati/type#tesisOICC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/4/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD54THUMBNAILT018_74124685_T.pdf.jpgT018_74124685_T.pdf.jpgGenerated Thumbnailimage/jpeg11296https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/7/T018_74124685_T.pdf.jpg0274869e1d940fe46404f17fe91609afMD57FA_74124685_SR.pdf.jpgFA_74124685_SR.pdf.jpgGenerated Thumbnailimage/jpeg16380https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/9/FA_74124685_SR.pdf.jpgfa9904b7c07a58ffc24e6f8289579bf8MD59TURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.jpgTURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.jpgGenerated Thumbnailimage/jpeg6954https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/11/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.jpg498f75e09bde7ba3c071eb2789091cfcMD511TEXTT018_74124685_T.pdf.txtT018_74124685_T.pdf.txtExtracted texttext/plain36834https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/6/T018_74124685_T.pdf.txtb93d6677193b9db6b8e0cd56915a97feMD56FA_74124685_SR.pdf.txtFA_74124685_SR.pdf.txtExtracted texttext/plain2622https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/8/FA_74124685_SR.pdf.txte38493515f4f9b0b0b5eab2b236052b8MD58TURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.txtTURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdf.txtExtracted texttext/plain711https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/10/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf.txtbe811facda17f33b863d3d2716a2c24dMD510ORIGINALT018_74124685_T.pdfT018_74124685_T.pdfTesisapplication/pdf608352https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/1/T018_74124685_T.pdf3f4fb118e6a596e45061853a5536ac32MD51FA_74124685_SR.pdfFA_74124685_SR.pdfAutorizaciónapplication/pdf262774https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/2/FA_74124685_SR.pdfd29d055690b91295a44fe94a5e47af19MD52TURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdfTURNITIN - CABRERA FEIJOO GIANELLA VALERIA_20170231.pdfReporte de similitudapplication/pdf2666286https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/3/TURNITIN%20-%20CABRERA%20FEIJOO%20GIANELLA%20VALERIA_20170231.pdf691faa98e9ed8d8d1d5dcb8cf3f727ceMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18455/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5520.500.12724/18455oai:repositorio.ulima.edu.pe:20.500.12724/184552025-09-18 12:48:25.667Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.884314
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).