Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática
Descripción del Articulo
Objetivo: Identificar el desarrollo de las tecnologías basadas en inteligencia artificial que sean capaces de diagnosticar el síndrome coronario agudo (SCA). Materiales y métodos: Se llevó a cabo una búsqueda sistemática en múltiples bases de datos, incluyendo Medline, SCOPUS, IEEE XPLORE y EMBASE,...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana Cayetano Heredia |
| Repositorio: | UPCH-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.upch.edu.pe:20.500.12866/15537 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12866/15537 |
| Nivel de acceso: | acceso abierto |
| Materia: | Síndrome Coronario Agudo Inteligencia Artificial Diagnóstico Revisión sistemática https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.02.04 https://purl.org/pe-repo/ocde/ford#3.02.27 |
| id |
RPCH_35f2431dce5f44d571ae3429f6d5787c |
|---|---|
| oai_identifier_str |
oai:repositorio.upch.edu.pe:20.500.12866/15537 |
| network_acronym_str |
RPCH |
| network_name_str |
UPCH-Institucional |
| repository_id_str |
3932 |
| dc.title.es_ES.fl_str_mv |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| title |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| spellingShingle |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática Paucar Escalante, Jesus Francisco Síndrome Coronario Agudo Inteligencia Artificial Diagnóstico Revisión sistemática https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.02.04 https://purl.org/pe-repo/ocde/ford#3.02.27 |
| title_short |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| title_full |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| title_fullStr |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| title_full_unstemmed |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| title_sort |
Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemática |
| author |
Paucar Escalante, Jesus Francisco |
| author_facet |
Paucar Escalante, Jesus Francisco |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Fonseca Arroyo, Pablo Alejandro Segura Saldaña, Pedro Antonio |
| dc.contributor.author.fl_str_mv |
Paucar Escalante, Jesus Francisco |
| dc.subject.es_ES.fl_str_mv |
Síndrome Coronario Agudo Inteligencia Artificial Diagnóstico Revisión sistemática |
| topic |
Síndrome Coronario Agudo Inteligencia Artificial Diagnóstico Revisión sistemática https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.02.04 https://purl.org/pe-repo/ocde/ford#3.02.27 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.02.04 https://purl.org/pe-repo/ocde/ford#3.02.27 |
| description |
Objetivo: Identificar el desarrollo de las tecnologías basadas en inteligencia artificial que sean capaces de diagnosticar el síndrome coronario agudo (SCA). Materiales y métodos: Se llevó a cabo una búsqueda sistemática en múltiples bases de datos, incluyendo Medline, SCOPUS, IEEE XPLORE y EMBASE, con el propósito de identificar investigaciones relacionadas con la aplicación de herramientas inteligentes como Machine Learning (ML) y Deep Learning (DL) con la capacidad de diagnosticar el SCA. Esta búsqueda se centró en estudios que siguieran la definición proporcionada en la guía práctica clínica de la Sociedad Europea de Cardiología 2021 y que estuvieran disponibles hasta el 2 de agosto del 2021. Se incluyeron investigaciones de tipo cohorte, casos y controles cuyos resultados incidieran directamente en la posibilidad de diagnóstico del SCA. Sin embargo, se excluyeron aquellos estudios donde solo se utilizaron señales ECG. Para evaluar el riesgo del sesgo en los estudios, utilizamos la escala de New Castle – Ottawa. Resultados: Un total de 24 artículos científicos fueron identificados para la revisión sistemática. No se realizó meta – análisis debido a la heterogeneidad clínica de los estudios mientras que el enfoque realizado se basó en tres perspectivas: 1) Tecnología usada, 2) Países de desarrollo del estudio y 3) Generación del algoritmo aplicado en cada estudio. Se halló una mayor frecuencia para estudios realizados por tomografía con un gran desarrollo de algoritmos basados en ML y DL encontrando los mejores resultados para el caso de DL con un 99.5% de precisión. Así mismo, por países, se encontró la predominancia de estudios en China seguido por Estados Unidos cuyas aspiraciones se basan en el liderazgo en el campo de la Inteligencia Artificial. Conclusión: Se encontró una precisión del 99.5% en DL para el diagnóstico de SCA y algunas otras con una precisión por encima del 90% con oportunidades de mejora. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-06-19T20:50:23Z |
| dc.date.available.none.fl_str_mv |
2024-06-19T20:50:23Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.other.es_ES.fl_str_mv |
209973 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12866/15537 |
| identifier_str_mv |
209973 |
| url |
https://hdl.handle.net/20.500.12866/15537 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es |
| dc.format.es_ES.fl_str_mv |
application/pdf |
| dc.publisher.es_ES.fl_str_mv |
Universidad Peruana Cayetano Heredia |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:UPCH-Institucional instname:Universidad Peruana Cayetano Heredia instacron:UPCH |
| instname_str |
Universidad Peruana Cayetano Heredia |
| instacron_str |
UPCH |
| institution |
UPCH |
| reponame_str |
UPCH-Institucional |
| collection |
UPCH-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.upch.edu.pe/bitstream/20.500.12866/15537/2/license.txt https://repositorio.upch.edu.pe/bitstream/20.500.12866/15537/1/Tecnologias_PaucarEscalante_Jesus.pdf |
| bitstream.checksum.fl_str_mv |
f0cc608fbbde7146ed2121d53f577bd9 813f9f872290de70aaf059fa8f8ed957 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad Peruana Cayetano Heredia |
| repository.mail.fl_str_mv |
repositorio.institucional@oficinas-upch.pe |
| _version_ |
1813002664147943424 |
| spelling |
Fonseca Arroyo, Pablo AlejandroSegura Saldaña, Pedro AntonioPaucar Escalante, Jesus Francisco2024-06-19T20:50:23Z2024-06-19T20:50:23Z2023209973https://hdl.handle.net/20.500.12866/15537Objetivo: Identificar el desarrollo de las tecnologías basadas en inteligencia artificial que sean capaces de diagnosticar el síndrome coronario agudo (SCA). Materiales y métodos: Se llevó a cabo una búsqueda sistemática en múltiples bases de datos, incluyendo Medline, SCOPUS, IEEE XPLORE y EMBASE, con el propósito de identificar investigaciones relacionadas con la aplicación de herramientas inteligentes como Machine Learning (ML) y Deep Learning (DL) con la capacidad de diagnosticar el SCA. Esta búsqueda se centró en estudios que siguieran la definición proporcionada en la guía práctica clínica de la Sociedad Europea de Cardiología 2021 y que estuvieran disponibles hasta el 2 de agosto del 2021. Se incluyeron investigaciones de tipo cohorte, casos y controles cuyos resultados incidieran directamente en la posibilidad de diagnóstico del SCA. Sin embargo, se excluyeron aquellos estudios donde solo se utilizaron señales ECG. Para evaluar el riesgo del sesgo en los estudios, utilizamos la escala de New Castle – Ottawa. Resultados: Un total de 24 artículos científicos fueron identificados para la revisión sistemática. No se realizó meta – análisis debido a la heterogeneidad clínica de los estudios mientras que el enfoque realizado se basó en tres perspectivas: 1) Tecnología usada, 2) Países de desarrollo del estudio y 3) Generación del algoritmo aplicado en cada estudio. Se halló una mayor frecuencia para estudios realizados por tomografía con un gran desarrollo de algoritmos basados en ML y DL encontrando los mejores resultados para el caso de DL con un 99.5% de precisión. Así mismo, por países, se encontró la predominancia de estudios en China seguido por Estados Unidos cuyas aspiraciones se basan en el liderazgo en el campo de la Inteligencia Artificial. Conclusión: Se encontró una precisión del 99.5% en DL para el diagnóstico de SCA y algunas otras con una precisión por encima del 90% con oportunidades de mejora.Objective: To identify the development of artificial intelligence-based technologies capable of diagnosing acute coronary syndrome (ACS). Materials and methods: Certain systematic searches were conducted across multiple databases, including Medline, SCOPUS, IEEE XPLORE, and EMBASE, to identify studies related to the use of intelligent tools such as Machine Learning (ML) and Deep Learning (DL) for diagnosing Acute Coronary Syndrome (ACS) in accordance with the definition provided in the 2021 practical clinical guidelines of the European Society of Cardiology. This search encompassed studies published up to August 2, 2021. We considered cohort and case-control studies that directly impacted the diagnostic potential of ACS, while excluding studies exclusively utilizing ECG signals. The assessment of study bias was carried out using the Newcastle-Ottawa Scale.. Results: A total of 24 scientific articles were identified for the systematic review. No meta-analysis was performed due to the clinical heterogeneity of the studies while the approach was based on three perspectives: 1) Technology used, 2) Countries of study development and 3) Generation of the algorithm applied in each study. A higher frequency was found for studies performed by tomography with a great development of algorithms based on ML and DL finding the best results for the case of DL with 99.5% accuracy. Likewise, by countries, it was found the predominance of studies in China followed by the United States whose aspirations are based on the leadership in the field of AI. Conclusion: An accuracy of 99.5% was found in DL for the diagnosis of ACS and some others with an accuracy above 90% with opportunities for improvement.Submitted by Yazmin Zelaya (yazmin.zelaya.b@upch.pe) on 2024-06-19T17:32:39Z No. of bitstreams: 1 Tecnologias_PaucarEscalante_Jesus.pdf: 1988073 bytes, checksum: 813f9f872290de70aaf059fa8f8ed957 (MD5)Approved for entry into archive by Mirtha Quispe (mirtha.quispe@upch.pe) on 2024-06-19T20:34:51Z (GMT) No. of bitstreams: 1 Tecnologias_PaucarEscalante_Jesus.pdf: 1988073 bytes, checksum: 813f9f872290de70aaf059fa8f8ed957 (MD5)Approved for entry into archive by Yazmin Zelaya (yazmin.zelaya.b@upch.pe) on 2024-06-19T20:49:57Z (GMT) No. of bitstreams: 1 Tecnologias_PaucarEscalante_Jesus.pdf: 1988073 bytes, checksum: 813f9f872290de70aaf059fa8f8ed957 (MD5)Made available in DSpace on 2024-06-19T20:50:23Z (GMT). No. of bitstreams: 1 Tecnologias_PaucarEscalante_Jesus.pdf: 1988073 bytes, checksum: 813f9f872290de70aaf059fa8f8ed957 (MD5) Previous issue date: 2023application/pdfspaUniversidad Peruana Cayetano HerediaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.esSíndrome Coronario AgudoInteligencia ArtificialDiagnósticoRevisión sistemáticahttps://purl.org/pe-repo/ocde/ford#1.02.01https://purl.org/pe-repo/ocde/ford#3.02.04https://purl.org/pe-repo/ocde/ford#3.02.27Tecnologías basadas en inteligencia artificial para el diagnóstico del síndrome coronario agudo: una revisión sistemáticainfo:eu-repo/semantics/bachelorThesisreponame:UPCH-Institucionalinstname:Universidad Peruana Cayetano Herediainstacron:UPCHSUNEDUIngeniero BiomédicoPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería||Universidad Peruana Cayetano Heredia. Facultad de Ciencias e Ingeniería Alberto Cazorla TalleriIngeniería Biomédica72158060https://orcid.org/0000-0002-0208-2842https://orcid.org/0000-0002-7859-84664469517441093526https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#tituloProfesional919016Raza Garcia, Mabel KarelAlvarez Vargas, Mayita LizbethMeza Rodriguez, Moises StevendLICENSElicense.txtlicense.txttext/plain; charset=utf-81859https://repositorio.upch.edu.pe/bitstream/20.500.12866/15537/2/license.txtf0cc608fbbde7146ed2121d53f577bd9MD52ORIGINALTecnologias_PaucarEscalante_Jesus.pdfTecnologias_PaucarEscalante_Jesus.pdfapplication/pdf1988073https://repositorio.upch.edu.pe/bitstream/20.500.12866/15537/1/Tecnologias_PaucarEscalante_Jesus.pdf813f9f872290de70aaf059fa8f8ed957MD5120.500.12866/15537oai:repositorio.upch.edu.pe:20.500.12866/155372024-10-04 10:05:23.84Repositorio Institucional Universidad Peruana Cayetano Herediarepositorio.institucional@oficinas-upch.peQmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3MgeSBjb25kaWNpb25lcywgYXV0b3Jpem8gZWwgZGVww7NzaXRvIGRlIGVzdGEgb2JyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVQQ0gKeSBhIGFxdWVsbG9zIGRvbmRlIGxhIGluc3RpdHVjacOzbiBzZSBlbmN1ZW50cmUgYWRzY3JpdGEuCgpDb24gbGEgYXV0b3JpemFjacOzbiBkZSBkZXDDs3NpdG8gZGUgZXN0YSBvYnJhICwgb3RvcmdvIGEgbGEgVW5pdmVyc2lkYWQgUGVydWFuYSBDYXlldGFubyBIZXJlZGlhLCB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhCnBhcmEgcmVwcm9kdWNpciwgZGlzdHJpYnVpciwgdHJhbnNmb3JtYXIgKHPDs2xvIGNvbiBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQgIHkvbyBpZGVudGlmaWNhY2nDs24gZGUgbGEgaW5zdGl0dWNpw7NuKSB5IHBvbmVyIGEKZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBsYSB2ZXJzacOzbiBkaWdpdGFsIGRlICBtaSBvYnJhIChpbmNsdWlkbyBlbCByZXN1bWVuKSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Cm8gY3VhbHF1aWVyIG90cmEgdGVjbm9sb2fDrWEgc3VzY2VwdGlibGUgZGUgYWRzY3JpcGNpw7NuIGEgSW50ZXJuZXQsIGVuIGxvcyBwb3J0YWxlcyBpbnN0aXR1Y2lvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgUGVydWFuYQpDYXlldGFubyBIZXJlZGlhLCBlbiBlbCBSZXBvc2l0b3JpbyBkZSBUcmFiYWpvcyBkZSBJbnZlc3RpZ2FjacOzbiBkZSBTVU5FRFUgeSBlbiB0b2RvcyBsb3MgcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgY29uIGxvcwpjdWFsZXMgbGEgVW5pdmVyc2lkYWQgZXN0ZSBhZHNjcml0byBlbiBsYSBhY3R1YWxpZGFkIHkgZnV0dXJvLiAKCkVuIHRvZG9zIGxvcyBjYXNvcyBsYSBVbml2ZXJzaWRhZCBQZXJ1YW5hIENheWV0YW5vIEhlcmVkaWEgZGViZXLDoSByZWNvbm9jZXIgZWwgbm9tYnJlIGRlbCBhdXRvciBvIGF1dG9yZXMsIGNvbmZvcm1lIGxhIGxleSBsbyBzZcOxYWxhLiAKCkFzaW1pc21vIGRlY2xhcm8gcXVlIGxhIG9icmEgZXMgdW5hIGNyZWFjacOzbiBkZSBtaSBhdXRvcsOtYSB5IGV4Y2x1c2l2YSB0aXR1bGFyaWRhZCwgbyBjb2F1dG9yw61hIGNvbiB0aXR1bGFyaWRhZCBjb21wYXJ0aWRhLCB5IG1lCmVuY3VlbnRybyBmYWN1bHRhZG8gKGEpIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgZGUgaWd1YWwgZm9ybWEsIGdhcmFudGl6w7MgcXVlIGRpY2hhIG9icmEgbm8gaW5mcmluZ2UgZGVyZWNob3MgZGUgYXV0b3IgZGUKdGVyY2VyYXMgcGVyc29uYXMuIAoKQ29uZmlybW8gcXVlIGNvbiByZXNwZWN0byBhIGxhIGluZm9ybWFjacOzbiBwcmV2aWFtZW50ZSBwcmVzZW50YWRhLCBvcmlnaW5hbGlkYWQgZGUgbGEgb2JyYSB5IGdvY2UgZGUgZGVyZWNob3MgY2VkaWRvcyBzZWfDum4gbGFzCmNvbmRpY2lvbmVzIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gZXMgdmVyYXouIFNpbiBwZXJqdWljaW8gZGUgY3VhbHF1aWVyIG90cm8gZGVyZWNobyBxdWUgcHVlZGEgY29ycmVzcG9uZGVybGUgYWwgYXV0b3IsIGxhClVuaXZlcnNpZGFkIHBvZHLDoSByZXNjaW5kaXIgdW5pbGF0ZXJhbG1lbnRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZW4gY2FzbyBkZSBxdWUgdW4gdGVyY2VybyBoYWdhIHByZXZhbGVjZXIgY3VhbHF1aWVyIGRlcmVjaG8Kc29icmUgdG9kbyBvIHBhcnRlIGRlIGxhIG9icmEuIEVuIGNhc28gZGUgbGEgZXhpc3RlbmNpYSBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIGRlIHVuIHRlcmNlcm8gcmVsYWNpb25hZGEgY29uIGxhIG9icmEsIHF1ZWRhIGxhClVuaXZlcnNpZGFkIGV4ZW50YSBkZSByZXNwb25zYWJpbGlkYWQuIAo= |
| score |
13.888049 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).