Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa
Descripción del Articulo
El notable crecimiento poblacional en la ciudad de puno se ve manifestado en el acrecentamiento del consumo per cápita de la energía eléctrica, por consecuencia se tiene que el comportamiento de los sistemas eléctricos de transmisión sea dinámico, interactivo y poco predecible con cierto grado de im...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional Del Altiplano |
Repositorio: | UNAP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:https://repositorio.unap.edu.pe:20.500.14082/19204 |
Enlace del recurso: | https://repositorio.unap.edu.pe/handle/20.500.14082/19204 |
Nivel de acceso: | acceso abierto |
Materia: | Corto plazo Demanda eléctrica Energía eléctrica Python Predicción Perceptron multicapa Redes neuronales Tensorflow https://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
RNAP_fac97d286c20a1b7108a7f8c9111c593 |
---|---|
oai_identifier_str |
oai:https://repositorio.unap.edu.pe:20.500.14082/19204 |
network_acronym_str |
RNAP |
network_name_str |
UNAP-Institucional |
repository_id_str |
9382 |
dc.title.es_PE.fl_str_mv |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
title |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
spellingShingle |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa Quispe Machaca, Axel Jefferson Corto plazo Demanda eléctrica Energía eléctrica Python Predicción Perceptron multicapa Redes neuronales Tensorflow https://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
title_full |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
title_fullStr |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
title_full_unstemmed |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
title_sort |
Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa |
author |
Quispe Machaca, Axel Jefferson |
author_facet |
Quispe Machaca, Axel Jefferson |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Ramos Cutipa, Jose Manuel |
dc.contributor.author.fl_str_mv |
Quispe Machaca, Axel Jefferson |
dc.subject.es_PE.fl_str_mv |
Corto plazo Demanda eléctrica Energía eléctrica Python Predicción Perceptron multicapa Redes neuronales Tensorflow |
topic |
Corto plazo Demanda eléctrica Energía eléctrica Python Predicción Perceptron multicapa Redes neuronales Tensorflow https://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
El notable crecimiento poblacional en la ciudad de puno se ve manifestado en el acrecentamiento del consumo per cápita de la energía eléctrica, por consecuencia se tiene que el comportamiento de los sistemas eléctricos de transmisión sea dinámico, interactivo y poco predecible con cierto grado de imprecisión, esto debido a la varianza de las demandas de energías eléctricas, varianza directamente relacionada con factores temporales, económicos y climáticos. La presente tesis se desarrolló con la intención de elaborar una metodología de proyección de la demanda de energía eléctrica, utilizando redes neuronales del tipo perceptrón multicapa aplicado a la barra de 60 KV del sistema eléctrico Puno. Esto con la finalidad de disminuir la desigualdad entre la demanda de energía eléctrica proyectada y la demanda real, finalmente se logró el propósito además de lograr de disminuir el error de predicción de la demanda de energía eléctrica mediante el modelo de RNA del tipo MLS, con un nivel de confianza de 94.8 %. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-28T20:01:19Z |
dc.date.available.none.fl_str_mv |
2022-11-28T20:01:19Z |
dc.date.issued.fl_str_mv |
2022-11-30 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
bachelorThesis |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unap.edu.pe/handle/20.500.14082/19204 |
url |
https://repositorio.unap.edu.pe/handle/20.500.14082/19204 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional del Altiplano. Repositorio Institucional - UNAP |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Nacional del Altiplano Repositorio Institucional - UNAP |
dc.source.none.fl_str_mv |
reponame:UNAP-Institucional instname:Universidad Nacional Del Altiplano instacron:UNAP |
instname_str |
Universidad Nacional Del Altiplano |
instacron_str |
UNAP |
institution |
UNAP |
reponame_str |
UNAP-Institucional |
collection |
UNAP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.unap.edu.pe/bitstream/20.500.14082/19204/1/Quispe_Machaca_Axel_Jefferson.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/19204/2/license.txt |
bitstream.checksum.fl_str_mv |
ef2c5a0341c0515f52e010ae78829250 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional de la Universidad Nacional del Altiplano |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1819880854481010688 |
spelling |
Ramos Cutipa, Jose ManuelQuispe Machaca, Axel Jefferson2022-11-28T20:01:19Z2022-11-28T20:01:19Z2022-11-30https://repositorio.unap.edu.pe/handle/20.500.14082/19204El notable crecimiento poblacional en la ciudad de puno se ve manifestado en el acrecentamiento del consumo per cápita de la energía eléctrica, por consecuencia se tiene que el comportamiento de los sistemas eléctricos de transmisión sea dinámico, interactivo y poco predecible con cierto grado de imprecisión, esto debido a la varianza de las demandas de energías eléctricas, varianza directamente relacionada con factores temporales, económicos y climáticos. La presente tesis se desarrolló con la intención de elaborar una metodología de proyección de la demanda de energía eléctrica, utilizando redes neuronales del tipo perceptrón multicapa aplicado a la barra de 60 KV del sistema eléctrico Puno. Esto con la finalidad de disminuir la desigualdad entre la demanda de energía eléctrica proyectada y la demanda real, finalmente se logró el propósito además de lograr de disminuir el error de predicción de la demanda de energía eléctrica mediante el modelo de RNA del tipo MLS, con un nivel de confianza de 94.8 %.application/pdfspaUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esUniversidad Nacional del AltiplanoRepositorio Institucional - UNAPreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPCorto plazoDemanda eléctricaEnergía eléctricaPythonPredicciónPerceptron multicapaRedes neuronalesTensorflowhttps://purl.org/pe-repo/ocde/ford#2.02.03Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapainfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionSUNEDUIngeniero Mecánico ElectricistaIngeniería Mecánica EléctricaUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemashttps://orcid.org/0000-0001-5447-336201342289https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#tituloProfesional713076Salinas Mena, Mateo AlejandroHurtado Chavez, Angel MarioQuisocala Herrera, Jhimmy Alberth75238863ORIGINALQuispe_Machaca_Axel_Jefferson.pdfQuispe_Machaca_Axel_Jefferson.pdfapplication/pdf2602082https://repositorio.unap.edu.pe/bitstream/20.500.14082/19204/1/Quispe_Machaca_Axel_Jefferson.pdfef2c5a0341c0515f52e010ae78829250MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unap.edu.pe/bitstream/20.500.14082/19204/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14082/19204oai:https://repositorio.unap.edu.pe:20.500.14082/192042024-03-04 16:07:10.719Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.836569 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).