Predicción de la demanda de energía en la barra de 60KV del sistema eléctrico Puno mediante redes neuronales del tipo perceptron multicapa

Descripción del Articulo

El notable crecimiento poblacional en la ciudad de puno se ve manifestado en el acrecentamiento del consumo per cápita de la energía eléctrica, por consecuencia se tiene que el comportamiento de los sistemas eléctricos de transmisión sea dinámico, interactivo y poco predecible con cierto grado de im...

Descripción completa

Detalles Bibliográficos
Autor: Quispe Machaca, Axel Jefferson
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/19204
Enlace del recurso:https://repositorio.unap.edu.pe/handle/20.500.14082/19204
Nivel de acceso:acceso abierto
Materia:Corto plazo
Demanda eléctrica
Energía eléctrica
Python
Predicción
Perceptron multicapa
Redes neuronales
Tensorflow
https://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:El notable crecimiento poblacional en la ciudad de puno se ve manifestado en el acrecentamiento del consumo per cápita de la energía eléctrica, por consecuencia se tiene que el comportamiento de los sistemas eléctricos de transmisión sea dinámico, interactivo y poco predecible con cierto grado de imprecisión, esto debido a la varianza de las demandas de energías eléctricas, varianza directamente relacionada con factores temporales, económicos y climáticos. La presente tesis se desarrolló con la intención de elaborar una metodología de proyección de la demanda de energía eléctrica, utilizando redes neuronales del tipo perceptrón multicapa aplicado a la barra de 60 KV del sistema eléctrico Puno. Esto con la finalidad de disminuir la desigualdad entre la demanda de energía eléctrica proyectada y la demanda real, finalmente se logró el propósito además de lograr de disminuir el error de predicción de la demanda de energía eléctrica mediante el modelo de RNA del tipo MLS, con un nivel de confianza de 94.8 %.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).