Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022

Descripción del Articulo

It was proposed to answer if the machines can really analyzethe sentiments of the tweets, then the messages in Spanish onTwitter that spoke of KFC were analyzed. The tweets werecaptured every day in the time period of the first quarter ofthe year 2022 from the Latin American region, later theywere a...

Descripción completa

Detalles Bibliográficos
Autores: Morales Gonzales, Ruso Alexander, Guzmán Valdivia, José Antonio, Herrera Quispe, José Alfredo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de San Martín de Porres
Repositorio:Revistas - Universidad de San Martín de Porres
Lenguaje:español
OAI Identifier:oai:revistas.usmp.edu.pe:article/2677
Enlace del recurso:https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677
Nivel de acceso:acceso abierto
Materia:Sentiment analysis, Machine Learning, Deep Learning, Twitter messages
Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter
id REVUSMP_28ae9530e082f281e72f4aeb8056ac2b
oai_identifier_str oai:revistas.usmp.edu.pe:article/2677
network_acronym_str REVUSMP
network_name_str Revistas - Universidad de San Martín de Porres
repository_id_str
dc.title.none.fl_str_mv Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
Análisis de sentimiento de los mensajes de Twitter respecto a la empresa KFC del primer trimestre en Hispanoamérica 2022
title Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
spellingShingle Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
Morales Gonzales, Ruso Alexander
Sentiment analysis, Machine Learning, Deep Learning, Twitter messages
Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter
title_short Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
title_full Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
title_fullStr Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
title_full_unstemmed Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
title_sort Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
dc.creator.none.fl_str_mv Morales Gonzales, Ruso Alexander
Guzmán Valdivia, José Antonio
Herrera Quispe, José Alfredo
author Morales Gonzales, Ruso Alexander
author_facet Morales Gonzales, Ruso Alexander
Guzmán Valdivia, José Antonio
Herrera Quispe, José Alfredo
author_role author
author2 Guzmán Valdivia, José Antonio
Herrera Quispe, José Alfredo
author2_role author
author
dc.subject.none.fl_str_mv Sentiment analysis, Machine Learning, Deep Learning, Twitter messages
Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter
topic Sentiment analysis, Machine Learning, Deep Learning, Twitter messages
Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter
description It was proposed to answer if the machines can really analyzethe sentiments of the tweets, then the messages in Spanish onTwitter that spoke of KFC were analyzed. The tweets werecaptured every day in the time period of the first quarter ofthe year 2022 from the Latin American region, later theywere analyzed by month and for each company mentionedin the tweets, these came to add 39,269 messages for KFC. We focused on discovering what were the feelings related to eachmessage left, for this reason the polarity of the feeling betweenpositive and negative was sought, the first being related to wellbeing,happiness, and love, while the second polarity, negativewas related to discomfort, sadness, and hatred. After obtainingthe polarity, it remained to discover what its degree was, the high,medium and low indicators were used, thus having the degrees:high positives, medium positives, low positives, high negatives,medium negatives, and low negatives. The term neutral or neutralwas used for unpolarized messages, not meaning a feeling, that is,neutral feelings do not exist, it is only the result of the absence ofsufficient data to classify it in some polarity. Everything mentionedwas done through artificial intelligence, but considering that it wassought to answer if the feelings of the text messages can really beanalyzed, that is why two different heuristics were used, MachineLearning and Deep Learning, with them it was possible identifythe polarity and degree of sentiment of Twitter messages regardingthe KFC company in the first quarter in Latin America 2022.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677
url https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3387
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3402
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3403
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
text/xml
dc.publisher.none.fl_str_mv Universidad de San Martín de Porres
publisher.none.fl_str_mv Universidad de San Martín de Porres
dc.source.none.fl_str_mv Campus; Vol. 28 No. 36 (2023): Campus XXXVI
Campus; Vol. 28 Núm. 36 (2023): Campus XXXVI
Campus; v. 28 n. 36 (2023): Campus XXXVI
2523-1820
1812-6049
reponame:Revistas - Universidad de San Martín de Porres
instname:Universidad de San Martín de Porres
instacron:USMP
instname_str Universidad de San Martín de Porres
instacron_str USMP
institution USMP
reponame_str Revistas - Universidad de San Martín de Porres
collection Revistas - Universidad de San Martín de Porres
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846883123244040192
spelling Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022Análisis de sentimiento de los mensajes de Twitter respecto a la empresa KFC del primer trimestre en Hispanoamérica 2022Morales Gonzales, Ruso AlexanderGuzmán Valdivia, José AntonioHerrera Quispe, José AlfredoSentiment analysis, Machine Learning, Deep Learning, Twitter messagesAnálisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de TwitterIt was proposed to answer if the machines can really analyzethe sentiments of the tweets, then the messages in Spanish onTwitter that spoke of KFC were analyzed. The tweets werecaptured every day in the time period of the first quarter ofthe year 2022 from the Latin American region, later theywere analyzed by month and for each company mentionedin the tweets, these came to add 39,269 messages for KFC. We focused on discovering what were the feelings related to eachmessage left, for this reason the polarity of the feeling betweenpositive and negative was sought, the first being related to wellbeing,happiness, and love, while the second polarity, negativewas related to discomfort, sadness, and hatred. After obtainingthe polarity, it remained to discover what its degree was, the high,medium and low indicators were used, thus having the degrees:high positives, medium positives, low positives, high negatives,medium negatives, and low negatives. The term neutral or neutralwas used for unpolarized messages, not meaning a feeling, that is,neutral feelings do not exist, it is only the result of the absence ofsufficient data to classify it in some polarity. Everything mentionedwas done through artificial intelligence, but considering that it wassought to answer if the feelings of the text messages can really beanalyzed, that is why two different heuristics were used, MachineLearning and Deep Learning, with them it was possible identifythe polarity and degree of sentiment of Twitter messages regardingthe KFC company in the first quarter in Latin America 2022.Se planteó responder si realmente las máquinas puedenanalizar los sentimientos de los tuits, entonces se analizaronlos mensajes en español de Twitter que hablaban de KFC. Lostuits se capturaron todos los días en el periodo de tiempo delprimer trimestre del año 2022 provenientes de la región deHispanoamérica, posteriormente se analizaron para mes y paracada empresa mencionada en los tuits, estos llegaron a sumar39,269 mensajes para KFC. Nos enfocamos en descubrircuáles eran los sentimientos relacionados con cada mensajedejado, por tal motivo se buscó la polaridad del sentimientoentre positivo y negativo, siendo relacionado lo primero albienestar, a las alegrías, y al amor, mientras que la segundapolaridad, lo negativo se relacionó al malestar, a las tristezas, yel odio. Después de obtener la polaridad, quedo descubrir cuálera su grado, se emplearon los indicadores de alto, medio ybajo, teniendo así los grados: positivos altos, positivos medios,positivos bajos, negativos altos, negativos medios, y negativosbajos. Se usó el término neutral o neutro para los mensajes sinpolarizar, no significando un sentimiento, es decir no existenlos sentimientos neutrales, solo es el resultado de la ausencia dedatos suficientes para clasificarlo en alguna polaridad. Todo lomencionado se realizó por medio de inteligencia artificial, peroconsiderando que se buscó responder si realmente se puedenanalizar los sentimientos de los mensajes de textos, es por esoque se utilizó dos heurísticas distintas, Machine Learning yDeep Learning, con ellas se logró identificar la polaridad y elgrado del sentimiento de los mensajes de Twitter respecto a laempresa KFC del primer trimestre en Hispanoamérica 2022.Universidad de San Martín de Porres2024-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmltext/xmlhttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677Campus; Vol. 28 No. 36 (2023): Campus XXXVICampus; Vol. 28 Núm. 36 (2023): Campus XXXVICampus; v. 28 n. 36 (2023): Campus XXXVI2523-18201812-6049reponame:Revistas - Universidad de San Martín de Porresinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3387https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3402https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3403Derechos de autor 2024 Ruso Alexander Morales Gonzales, José Antonio Guzmán Valdivia, José Alfredo Herrera Quispehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.usmp.edu.pe:article/26772024-02-16T15:16:25Z
score 12.636967
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).