Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022
Descripción del Articulo
It was proposed to answer if the machines can really analyzethe sentiments of the tweets, then the messages in Spanish onTwitter that spoke of KFC were analyzed. The tweets werecaptured every day in the time period of the first quarter ofthe year 2022 from the Latin American region, later theywere a...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de San Martín de Porres |
| Repositorio: | Revistas - Universidad de San Martín de Porres |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.usmp.edu.pe:article/2677 |
| Enlace del recurso: | https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677 |
| Nivel de acceso: | acceso abierto |
| Materia: | Sentiment analysis, Machine Learning, Deep Learning, Twitter messages Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter |
| id |
REVUSMP_28ae9530e082f281e72f4aeb8056ac2b |
|---|---|
| oai_identifier_str |
oai:revistas.usmp.edu.pe:article/2677 |
| network_acronym_str |
REVUSMP |
| network_name_str |
Revistas - Universidad de San Martín de Porres |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 Análisis de sentimiento de los mensajes de Twitter respecto a la empresa KFC del primer trimestre en Hispanoamérica 2022 |
| title |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 |
| spellingShingle |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 Morales Gonzales, Ruso Alexander Sentiment analysis, Machine Learning, Deep Learning, Twitter messages Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter |
| title_short |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 |
| title_full |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 |
| title_fullStr |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 |
| title_full_unstemmed |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 |
| title_sort |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022 |
| dc.creator.none.fl_str_mv |
Morales Gonzales, Ruso Alexander Guzmán Valdivia, José Antonio Herrera Quispe, José Alfredo |
| author |
Morales Gonzales, Ruso Alexander |
| author_facet |
Morales Gonzales, Ruso Alexander Guzmán Valdivia, José Antonio Herrera Quispe, José Alfredo |
| author_role |
author |
| author2 |
Guzmán Valdivia, José Antonio Herrera Quispe, José Alfredo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Sentiment analysis, Machine Learning, Deep Learning, Twitter messages Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter |
| topic |
Sentiment analysis, Machine Learning, Deep Learning, Twitter messages Análisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de Twitter |
| description |
It was proposed to answer if the machines can really analyzethe sentiments of the tweets, then the messages in Spanish onTwitter that spoke of KFC were analyzed. The tweets werecaptured every day in the time period of the first quarter ofthe year 2022 from the Latin American region, later theywere analyzed by month and for each company mentionedin the tweets, these came to add 39,269 messages for KFC. We focused on discovering what were the feelings related to eachmessage left, for this reason the polarity of the feeling betweenpositive and negative was sought, the first being related to wellbeing,happiness, and love, while the second polarity, negativewas related to discomfort, sadness, and hatred. After obtainingthe polarity, it remained to discover what its degree was, the high,medium and low indicators were used, thus having the degrees:high positives, medium positives, low positives, high negatives,medium negatives, and low negatives. The term neutral or neutralwas used for unpolarized messages, not meaning a feeling, that is,neutral feelings do not exist, it is only the result of the absence ofsufficient data to classify it in some polarity. Everything mentionedwas done through artificial intelligence, but considering that it wassought to answer if the feelings of the text messages can really beanalyzed, that is why two different heuristics were used, MachineLearning and Deep Learning, with them it was possible identifythe polarity and degree of sentiment of Twitter messages regardingthe KFC company in the first quarter in Latin America 2022. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-02-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677 |
| url |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3387 https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3402 https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3403 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html text/xml |
| dc.publisher.none.fl_str_mv |
Universidad de San Martín de Porres |
| publisher.none.fl_str_mv |
Universidad de San Martín de Porres |
| dc.source.none.fl_str_mv |
Campus; Vol. 28 No. 36 (2023): Campus XXXVI Campus; Vol. 28 Núm. 36 (2023): Campus XXXVI Campus; v. 28 n. 36 (2023): Campus XXXVI 2523-1820 1812-6049 reponame:Revistas - Universidad de San Martín de Porres instname:Universidad de San Martín de Porres instacron:USMP |
| instname_str |
Universidad de San Martín de Porres |
| instacron_str |
USMP |
| institution |
USMP |
| reponame_str |
Revistas - Universidad de San Martín de Porres |
| collection |
Revistas - Universidad de San Martín de Porres |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846883123244040192 |
| spelling |
Sentiment analysis of Twitter messages regarding the KFC company inthe first quarter in Latin America 2022Análisis de sentimiento de los mensajes de Twitter respecto a la empresa KFC del primer trimestre en Hispanoamérica 2022Morales Gonzales, Ruso AlexanderGuzmán Valdivia, José AntonioHerrera Quispe, José AlfredoSentiment analysis, Machine Learning, Deep Learning, Twitter messagesAnálisis de sentimientos, Aprendizaje Automático, Aprendizaje Profundo, mensajes de TwitterIt was proposed to answer if the machines can really analyzethe sentiments of the tweets, then the messages in Spanish onTwitter that spoke of KFC were analyzed. The tweets werecaptured every day in the time period of the first quarter ofthe year 2022 from the Latin American region, later theywere analyzed by month and for each company mentionedin the tweets, these came to add 39,269 messages for KFC. We focused on discovering what were the feelings related to eachmessage left, for this reason the polarity of the feeling betweenpositive and negative was sought, the first being related to wellbeing,happiness, and love, while the second polarity, negativewas related to discomfort, sadness, and hatred. After obtainingthe polarity, it remained to discover what its degree was, the high,medium and low indicators were used, thus having the degrees:high positives, medium positives, low positives, high negatives,medium negatives, and low negatives. The term neutral or neutralwas used for unpolarized messages, not meaning a feeling, that is,neutral feelings do not exist, it is only the result of the absence ofsufficient data to classify it in some polarity. Everything mentionedwas done through artificial intelligence, but considering that it wassought to answer if the feelings of the text messages can really beanalyzed, that is why two different heuristics were used, MachineLearning and Deep Learning, with them it was possible identifythe polarity and degree of sentiment of Twitter messages regardingthe KFC company in the first quarter in Latin America 2022.Se planteó responder si realmente las máquinas puedenanalizar los sentimientos de los tuits, entonces se analizaronlos mensajes en español de Twitter que hablaban de KFC. Lostuits se capturaron todos los días en el periodo de tiempo delprimer trimestre del año 2022 provenientes de la región deHispanoamérica, posteriormente se analizaron para mes y paracada empresa mencionada en los tuits, estos llegaron a sumar39,269 mensajes para KFC. Nos enfocamos en descubrircuáles eran los sentimientos relacionados con cada mensajedejado, por tal motivo se buscó la polaridad del sentimientoentre positivo y negativo, siendo relacionado lo primero albienestar, a las alegrías, y al amor, mientras que la segundapolaridad, lo negativo se relacionó al malestar, a las tristezas, yel odio. Después de obtener la polaridad, quedo descubrir cuálera su grado, se emplearon los indicadores de alto, medio ybajo, teniendo así los grados: positivos altos, positivos medios,positivos bajos, negativos altos, negativos medios, y negativosbajos. Se usó el término neutral o neutro para los mensajes sinpolarizar, no significando un sentimiento, es decir no existenlos sentimientos neutrales, solo es el resultado de la ausencia dedatos suficientes para clasificarlo en alguna polaridad. Todo lomencionado se realizó por medio de inteligencia artificial, peroconsiderando que se buscó responder si realmente se puedenanalizar los sentimientos de los mensajes de textos, es por esoque se utilizó dos heurísticas distintas, Machine Learning yDeep Learning, con ellas se logró identificar la polaridad y elgrado del sentimiento de los mensajes de Twitter respecto a laempresa KFC del primer trimestre en Hispanoamérica 2022.Universidad de San Martín de Porres2024-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmltext/xmlhttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677Campus; Vol. 28 No. 36 (2023): Campus XXXVICampus; Vol. 28 Núm. 36 (2023): Campus XXXVICampus; v. 28 n. 36 (2023): Campus XXXVI2523-18201812-6049reponame:Revistas - Universidad de San Martín de Porresinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3387https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3402https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2677/3403Derechos de autor 2024 Ruso Alexander Morales Gonzales, José Antonio Guzmán Valdivia, José Alfredo Herrera Quispehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.usmp.edu.pe:article/26772024-02-16T15:16:25Z |
| score |
12.636967 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).