Sentiment analysis on Twitter in relation to AI technology for image generation

Descripción del Articulo

Advances in artificial intelligence (AI) technology have led to significant improvements in image generation in terms of speed and quality. However, it has generated concern and uncertainty among artists, who fear being replaced by AI in their field of work. In this context, the objective was to ana...

Descripción completa

Detalles Bibliográficos
Autores: Rosales Espinoza, Antony Pyero, Gonzales Suarez, Juan Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/125
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/125
https://doi.org/10.48168/innosoft.s15.a125
https://purl.org/42411/s15/a125
https://n2t.net/ark:/42411/s15/a125
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Sentiment analysis
Convolutional neural network
Artistic field
Twitter
Inteligencia artificial
Análisis de sentimiento
Red neuronal convolucional
Ámbito artístico
Descripción
Sumario:Advances in artificial intelligence (AI) technology have led to significant improvements in image generation in terms of speed and quality. However, it has generated concern and uncertainty among artists, who fear being replaced by AI in their field of work. In this context, the objective was to analyse Tweets defining the impact of artificial intelligence (AI) on the adoption of imaging technologies. For this purpose, the collection, creation and evaluation of a convolutional neural network that classifies the data according to a sentiment analysis between positive and negative was carried out. Finally, the research determined the loss rate of 63%, the accuracy with 61% and the ROC curve around 64% of a convolutional neural network for predicting Tweets.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).