Linear Regression application to predict the popularity index in Spotify

Descripción del Articulo

Currently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish i...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Alvarez, Cesar, Coaquira Cuevas, Edith, Mendoza Hilasaca, Emerson, Pinto Ñaupa, Jeffrey
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/110
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/110
https://doi.org/10.48168/innosoft.s12.a110
https://purl.org/42411/s12/a110
https://n2t.net/ark:/42411/s12/a110
Nivel de acceso:acceso abierto
Materia:Python
Linear Regression
Predict
Regresión Lineal
Predicción
Descripción
Sumario:Currently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish itself as a hit in the market. The objective of this work was to apply the Linear Regression modeling technique to find a trend of the data set on the popularity index of songs on the Spotify platform, in this way predict a result with new data that enters. A quantitative methodology was applied based on measurable data that were taken as datasets. As a result, a mean square error of 94.79 and a variance of 0.20 were obtained. The conclusion of the work is that the dataset used was not the ideal according to our objective.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).