Predictive analysis of confirmed COVID-19 cases in Peru based on the Gompertz non-linear regression model using fatality cases data

Descripción del Articulo

This study aims to evaluate the future of confirmed cases of Covid-19 in Peru, using the Gompertz nonlinear regression model. The data were obtained from official reports of the Peru Ministry of Health (MINSA). The accumulated value of fatal cases was subjected to iterative analysis by the non-linea...

Descripción completa

Detalles Bibliográficos
Autores: Pérez Paredes, Marina Gabriela Sadith, Huancachoque Mamani, Leonid Abimael, Nolasco Pérez, Irene Marivel
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/997
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/997
Nivel de acceso:acceso abierto
Materia:Modelo predictivo de Gompertz, Curva epidémica, Covid-19, Mínimos cuadrados no-lineal.
Gompertz predictive model, Epidemic curve, Covid-19, Non-linear least square
Descripción
Sumario:This study aims to evaluate the future of confirmed cases of Covid-19 in Peru, using the Gompertz nonlinear regression model. The data were obtained from official reports of the Peru Ministry of Health (MINSA). The accumulated value of fatal cases was subjected to iterative analysis by the non-linear least-squares method to achieve a model. Given the first-order derivative of the predictive model was obtained the daily fatal cases curve. Using the fatality rate as the proportion between infected and fatal cases, both of them would also provide days average lag to estimate the epidemic curve. For the moment, the predictive model suggests that Peru would be in a slow descent in the epidemic curve, moving away from the peak of contagions per day. The trend of reaching about 550 thousand infected and 19 thousand deaths until the end of the year 2020. The predictions of the mathematical models may vary according to the periodic updating of data, updated predictions will be published on www.yupay-dynamic.com
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).