Prediction of mortality due to Covid 19 in Peru using artificial neural networks
Descripción del Articulo
With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad La Salle |
| Repositorio: | Revistas - Universidad La Salle |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/43 |
| Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/43 https://doi.org/10.48168/innosoft.s6.a43 https://purl.org/42411/s6/a43 https://n2t.net/ark:/42411/s6/a43 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial Intelligence Time Series COVID 19 Prediction Forecast Inteligencia Artificial Series Temporales Predicción Pronóstico |
| id |
REVUSALLE_af415a13edd0a16f550a34f873c79480 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/43 |
| network_acronym_str |
REVUSALLE |
| network_name_str |
Revistas - Universidad La Salle |
| repository_id_str |
|
| spelling |
Prediction of mortality due to Covid 19 in Peru using artificial neural networksPredicción de mortalidad a causa del Covid 19 en Perú utilizando redes neuronales artificialesMayta Avalos , CesarValdivia Mamani , Jesús CristianRosales Castilla, FernandoGines Colana , MilcaArtificial IntelligenceTime SeriesCOVID 19PredictionForecastInteligencia ArtificialSeries TemporalesCOVID 19PredicciónPronósticoWith the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose a tool capable of predicting the number of deaths from COVID-19 as a function of time. The methodology used was artificial neural networks using time series with information obtained from the Ministry of Health of the Peruvian state through its open data portal. The results achieved had a mean square error of 0.0037 and a loss of 0.0480. The results obtained throughout the article confirm the validity of this tool and its effectiveness in predicting the number of deaths from COVID 19.Con el desarrollo de la pandemia en Perú, la cantidad de fallecidos ha ido en aumento y lamentablemente no se han tomado las medidas adecuadas, esto por no tener una herramienta que nos permita saber la cantidad de fallecidos posibles en un tiempo determinado. El objetivo del presente artículo es proponer una herramienta capaz de predecir la cantidad de fallecidos por COVID-19 en función del tiempo. La metodología utilizada fue redes neuronales artificiales utilizando series temporales con información obtenida del Ministerio de Salud del estado peruano a través de su portal de datos abiertos. Los resultados alcanzados tuvieron un error cuadrático medio de 0.0037 y pérdida de 0.0480. Los resultados obtenidos a lo largo del artículo confirman la validez de esta herramienta y la efectividad en la predicción de la cantidad de fallecidos a causa del COVID 19.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/43https://doi.org/10.48168/innosoft.s6.a43https://purl.org/42411/s6/a43https://n2t.net/ark:/42411/s6/a43Innovation and Software; Vol 2 No 2 (2021): September - February; 14-26Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 14-262708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/43/39https://revistas.ulasalle.edu.pe/innosoft/article/view/43/40https://purl.org/42411/s6/a43/g39https://purl.org/42411/s6/a43/g40https://n2t.net/ark:/42411/s6/a43/g39https://n2t.net/ark:/42411/s6/a43/g4020212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/432025-07-03T08:01:52Z |
| dc.title.none.fl_str_mv |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks Predicción de mortalidad a causa del Covid 19 en Perú utilizando redes neuronales artificiales |
| title |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks |
| spellingShingle |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks Mayta Avalos , Cesar Artificial Intelligence Time Series COVID 19 Prediction Forecast Inteligencia Artificial Series Temporales COVID 19 Predicción Pronóstico |
| title_short |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks |
| title_full |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks |
| title_fullStr |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks |
| title_full_unstemmed |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks |
| title_sort |
Prediction of mortality due to Covid 19 in Peru using artificial neural networks |
| dc.creator.none.fl_str_mv |
Mayta Avalos , Cesar Valdivia Mamani , Jesús Cristian Rosales Castilla, Fernando Gines Colana , Milca |
| author |
Mayta Avalos , Cesar |
| author_facet |
Mayta Avalos , Cesar Valdivia Mamani , Jesús Cristian Rosales Castilla, Fernando Gines Colana , Milca |
| author_role |
author |
| author2 |
Valdivia Mamani , Jesús Cristian Rosales Castilla, Fernando Gines Colana , Milca |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Artificial Intelligence Time Series COVID 19 Prediction Forecast Inteligencia Artificial Series Temporales COVID 19 Predicción Pronóstico |
| topic |
Artificial Intelligence Time Series COVID 19 Prediction Forecast Inteligencia Artificial Series Temporales COVID 19 Predicción Pronóstico |
| description |
With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose a tool capable of predicting the number of deaths from COVID-19 as a function of time. The methodology used was artificial neural networks using time series with information obtained from the Ministry of Health of the Peruvian state through its open data portal. The results achieved had a mean square error of 0.0037 and a loss of 0.0480. The results obtained throughout the article confirm the validity of this tool and its effectiveness in predicting the number of deaths from COVID 19. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper text Artículos originales |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/43 https://doi.org/10.48168/innosoft.s6.a43 https://purl.org/42411/s6/a43 https://n2t.net/ark:/42411/s6/a43 |
| url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/43 https://doi.org/10.48168/innosoft.s6.a43 https://purl.org/42411/s6/a43 https://n2t.net/ark:/42411/s6/a43 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/43/39 https://revistas.ulasalle.edu.pe/innosoft/article/view/43/40 https://purl.org/42411/s6/a43/g39 https://purl.org/42411/s6/a43/g40 https://n2t.net/ark:/42411/s6/a43/g39 https://n2t.net/ark:/42411/s6/a43/g40 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.coverage.none.fl_str_mv |
2021 2021 |
| dc.publisher.none.fl_str_mv |
Universidad La Salle |
| publisher.none.fl_str_mv |
Universidad La Salle |
| dc.source.none.fl_str_mv |
Innovation and Software; Vol 2 No 2 (2021): September - February; 14-26 Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 14-26 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s6 https://purl.org/42411/s6 https://n2t.net/ark:/42411/s6 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
| instname_str |
Universidad La Salle |
| instacron_str |
USALLE |
| institution |
USALLE |
| reponame_str |
Revistas - Universidad La Salle |
| collection |
Revistas - Universidad La Salle |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1850968426898522112 |
| score |
13.037274 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).