Prediction of mortality due to Covid 19 in Peru using artificial neural networks

Descripción del Articulo

With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose...

Descripción completa

Detalles Bibliográficos
Autores: Mayta Avalos , Cesar, Valdivia Mamani , Jesús Cristian, Rosales Castilla, Fernando, Gines Colana , Milca
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/43
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/43
https://doi.org/10.48168/innosoft.s6.a43
https://purl.org/42411/s6/a43
https://n2t.net/ark:/42411/s6/a43
Nivel de acceso:acceso abierto
Materia:Artificial Intelligence
Time Series
COVID 19
Prediction
Forecast
Inteligencia Artificial
Series Temporales
Predicción
Pronóstico
id REVUSALLE_af415a13edd0a16f550a34f873c79480
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/43
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Prediction of mortality due to Covid 19 in Peru using artificial neural networksPredicción de mortalidad a causa del Covid 19 en Perú utilizando redes neuronales artificialesMayta Avalos , CesarValdivia Mamani , Jesús CristianRosales Castilla, FernandoGines Colana , MilcaArtificial IntelligenceTime SeriesCOVID 19PredictionForecastInteligencia ArtificialSeries TemporalesCOVID 19PredicciónPronósticoWith the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose a tool capable of predicting the number of deaths from COVID-19 as a function of time. The methodology used was artificial neural networks using time series with information obtained from the Ministry of Health of the Peruvian state through its open data portal. The results achieved had a mean square error of 0.0037 and a loss of 0.0480. The results obtained throughout the article confirm the validity of this tool and its effectiveness in predicting the number of deaths from COVID 19.Con el desarrollo de la pandemia en Perú, la cantidad de fallecidos ha ido en aumento y lamentablemente no se han tomado las medidas adecuadas, esto por no tener una herramienta que nos permita saber la cantidad de fallecidos posibles en un tiempo determinado. El objetivo del presente artículo es proponer una herramienta capaz de predecir la cantidad de fallecidos por COVID-19 en función del tiempo. La metodología utilizada fue redes neuronales artificiales utilizando series temporales con información obtenida del Ministerio de Salud del estado peruano a través de su portal de datos abiertos. Los resultados alcanzados tuvieron un error cuadrático medio de 0.0037 y pérdida de 0.0480. Los resultados obtenidos a lo largo del artículo confirman la validez de esta herramienta y la efectividad en la predicción de la cantidad de fallecidos a causa del COVID 19.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/43https://doi.org/10.48168/innosoft.s6.a43https://purl.org/42411/s6/a43https://n2t.net/ark:/42411/s6/a43Innovation and Software; Vol 2 No 2 (2021): September - February; 14-26Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 14-262708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/43/39https://revistas.ulasalle.edu.pe/innosoft/article/view/43/40https://purl.org/42411/s6/a43/g39https://purl.org/42411/s6/a43/g40https://n2t.net/ark:/42411/s6/a43/g39https://n2t.net/ark:/42411/s6/a43/g4020212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/432025-07-03T08:01:52Z
dc.title.none.fl_str_mv Prediction of mortality due to Covid 19 in Peru using artificial neural networks
Predicción de mortalidad a causa del Covid 19 en Perú utilizando redes neuronales artificiales
title Prediction of mortality due to Covid 19 in Peru using artificial neural networks
spellingShingle Prediction of mortality due to Covid 19 in Peru using artificial neural networks
Mayta Avalos , Cesar
Artificial Intelligence
Time Series
COVID 19
Prediction
Forecast
Inteligencia Artificial
Series Temporales
COVID 19
Predicción
Pronóstico
title_short Prediction of mortality due to Covid 19 in Peru using artificial neural networks
title_full Prediction of mortality due to Covid 19 in Peru using artificial neural networks
title_fullStr Prediction of mortality due to Covid 19 in Peru using artificial neural networks
title_full_unstemmed Prediction of mortality due to Covid 19 in Peru using artificial neural networks
title_sort Prediction of mortality due to Covid 19 in Peru using artificial neural networks
dc.creator.none.fl_str_mv Mayta Avalos , Cesar
Valdivia Mamani , Jesús Cristian
Rosales Castilla, Fernando
Gines Colana , Milca
author Mayta Avalos , Cesar
author_facet Mayta Avalos , Cesar
Valdivia Mamani , Jesús Cristian
Rosales Castilla, Fernando
Gines Colana , Milca
author_role author
author2 Valdivia Mamani , Jesús Cristian
Rosales Castilla, Fernando
Gines Colana , Milca
author2_role author
author
author
dc.subject.none.fl_str_mv Artificial Intelligence
Time Series
COVID 19
Prediction
Forecast
Inteligencia Artificial
Series Temporales
COVID 19
Predicción
Pronóstico
topic Artificial Intelligence
Time Series
COVID 19
Prediction
Forecast
Inteligencia Artificial
Series Temporales
COVID 19
Predicción
Pronóstico
description With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose a tool capable of predicting the number of deaths from COVID-19 as a function of time. The methodology used was artificial neural networks using time series with information obtained from the Ministry of Health of the Peruvian state through its open data portal. The results achieved had a mean square error of 0.0037 and a loss of 0.0480. The results obtained throughout the article confirm the validity of this tool and its effectiveness in predicting the number of deaths from COVID 19.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/43
https://doi.org/10.48168/innosoft.s6.a43
https://purl.org/42411/s6/a43
https://n2t.net/ark:/42411/s6/a43
url https://revistas.ulasalle.edu.pe/innosoft/article/view/43
https://doi.org/10.48168/innosoft.s6.a43
https://purl.org/42411/s6/a43
https://n2t.net/ark:/42411/s6/a43
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/43/39
https://revistas.ulasalle.edu.pe/innosoft/article/view/43/40
https://purl.org/42411/s6/a43/g39
https://purl.org/42411/s6/a43/g40
https://n2t.net/ark:/42411/s6/a43/g39
https://n2t.net/ark:/42411/s6/a43/g40
dc.rights.none.fl_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2021
2021
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 2 No 2 (2021): September - February; 14-26
Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 14-26
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s6
https://purl.org/42411/s6
https://n2t.net/ark:/42411/s6
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1850968426898522112
score 13.037274
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).