Prediction of mortality due to Covid 19 in Peru using artificial neural networks

Descripción del Articulo

With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose...

Descripción completa

Detalles Bibliográficos
Autores: Mayta Avalos , Cesar, Valdivia Mamani , Jesús Cristian, Rosales Castilla, Fernando, Gines Colana , Milca
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/43
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/43
https://doi.org/10.48168/innosoft.s6.a43
https://purl.org/42411/s6/a43
https://n2t.net/ark:/42411/s6/a43
Nivel de acceso:acceso abierto
Materia:Artificial Intelligence
Time Series
COVID 19
Prediction
Forecast
Inteligencia Artificial
Series Temporales
Predicción
Pronóstico
Descripción
Sumario:With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose a tool capable of predicting the number of deaths from COVID-19 as a function of time. The methodology used was artificial neural networks using time series with information obtained from the Ministry of Health of the Peruvian state through its open data portal. The results achieved had a mean square error of 0.0037 and a loss of 0.0480. The results obtained throughout the article confirm the validity of this tool and its effectiveness in predicting the number of deaths from COVID 19.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).