Artificial intelligence in predictive IT incident management

Descripción del Articulo

This systematic review synthesizes the literature on the application of Artificial Intelligence (AI) in predictive incident management in Information Technology (IT). The study focuses on evaluating the predictive capability of AI-based solutions and identifying areas for future research. Using the...

Descripción completa

Detalles Bibliográficos
Autores: Amaya Jave, Luigui Jampierre, Querevalú Galán, Roger Alejandro, Mendoza de los Santos, Alberto Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/177
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/177
https://doi.org/10.48168/innosoft.s16.a177
https://purl.org/42411/s16/a177
https://n2t.net/ark:/42411/s16/a177
Nivel de acceso:acceso abierto
Materia:IT incidents
artificial intelligence
predictive management
incidentes de TI
inteligencia artificial
gestión predictiva
id REVUSALLE_954fc08c24b750f3e980f71f9fd49b26
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/177
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Artificial intelligence in predictive IT incident managementInteligencia artificial en la gestión predictiva de incidentes de TIAmaya Jave, Luigui JampierreQuerevalú Galán, Roger AlejandroMendoza de los Santos, Alberto CarlosIT incidentsartificial intelligencepredictive managementincidentes de TIinteligencia artificialgestión predictivaThis systematic review synthesizes the literature on the application of Artificial Intelligence (AI) in predictive incident management in Information Technology (IT). The study focuses on evaluating the predictive capability of AI-based solutions and identifying areas for future research. Using the PRISMA methodology, comprehensive searches were conducted in academic databases using specific search equations. Fifteen articles were selected that addressed the topic from various perspectives, highlighting the use of advanced techniques such as machine learning, deep learning, and transformers to enhance accuracy in predicting IT incidents. Furthermore, it explored how AI for IT Operations (AIOps) facilitates the automation and proactive management of incidents, thereby optimizing operational efficiency and system availability. The findings underscore the effectiveness of these technologies in reducing incident resolution times and improving organizational resilience against emerging technological challenges. Overall, this review emphasizes the importance of continuous innovation and strategic integration of AI in IT service management to enhance operational efficiency and strengthen organizational adaptability.Esta revisión sistemática sintetiza la literatura sobre la aplicación de la inteligencia artificial (IA) en la gestión predictiva de incidentes de Tecnologías de la Información (TI). El estudio se enfoca en evaluar la capacidad predictiva de las soluciones basadas en IA y en identificar áreas de oportunidad para investigaciones futuras. Utilizando la metodología PRISMA, se realizaron búsquedas exhaustivas en bases de datos académicas utilizando ecuaciones de búsqueda específicas. Se seleccionaron 15 artículos que abordan el tema desde diferentes perspectivas, destacando el uso de técnicas avanzadas como machine learning, deep learning y transformadores para mejorar la precisión en la predicción de incidentes de TI. Además, se exploró cómo la IA para Operaciones de TI (AIOps) facilita la automatización y gestión proactiva de incidentes, optimizando así la eficiencia operativa y la disponibilidad del sistema. Los hallazgos resaltan la efectividad de estas tecnologías en la reducción del tiempo de resolución de incidentes y en la mejora de la resiliencia organizacional frente a desafíos tecnológicos emergentes. En conjunto, esta revisión subraya la importancia de la innovación continua y la integración estratégica de IA en la gestión de servicios de TI para mejorar la eficiencia operativa y fortalecer la capacidad de adaptación de las organizaciones.Universidad La Salle2024-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalestextoapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/177https://doi.org/10.48168/innosoft.s16.a177https://purl.org/42411/s16/a177https://n2t.net/ark:/42411/s16/a177Innovation and Software; Vol 5 No 2 (2024): September - February; 85-103Innovación y Software; Vol. 5 Núm. 2 (2024): Septiembre - Febrero; 85-1032708-09352708-0927https://doi.org/10.48168/innosoft.s16https://purl.org/42411/s16https://n2t.net/ark:/42411/s16reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/177/250https://revistas.ulasalle.edu.pe/innosoft/article/view/177/251Derechos de autor 2024 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/1772025-07-03T08:02:30Z
dc.title.none.fl_str_mv Artificial intelligence in predictive IT incident management
Inteligencia artificial en la gestión predictiva de incidentes de TI
title Artificial intelligence in predictive IT incident management
spellingShingle Artificial intelligence in predictive IT incident management
Amaya Jave, Luigui Jampierre
IT incidents
artificial intelligence
predictive management
incidentes de TI
inteligencia artificial
gestión predictiva
title_short Artificial intelligence in predictive IT incident management
title_full Artificial intelligence in predictive IT incident management
title_fullStr Artificial intelligence in predictive IT incident management
title_full_unstemmed Artificial intelligence in predictive IT incident management
title_sort Artificial intelligence in predictive IT incident management
dc.creator.none.fl_str_mv Amaya Jave, Luigui Jampierre
Querevalú Galán, Roger Alejandro
Mendoza de los Santos, Alberto Carlos
author Amaya Jave, Luigui Jampierre
author_facet Amaya Jave, Luigui Jampierre
Querevalú Galán, Roger Alejandro
Mendoza de los Santos, Alberto Carlos
author_role author
author2 Querevalú Galán, Roger Alejandro
Mendoza de los Santos, Alberto Carlos
author2_role author
author
dc.subject.none.fl_str_mv IT incidents
artificial intelligence
predictive management
incidentes de TI
inteligencia artificial
gestión predictiva
topic IT incidents
artificial intelligence
predictive management
incidentes de TI
inteligencia artificial
gestión predictiva
description This systematic review synthesizes the literature on the application of Artificial Intelligence (AI) in predictive incident management in Information Technology (IT). The study focuses on evaluating the predictive capability of AI-based solutions and identifying areas for future research. Using the PRISMA methodology, comprehensive searches were conducted in academic databases using specific search equations. Fifteen articles were selected that addressed the topic from various perspectives, highlighting the use of advanced techniques such as machine learning, deep learning, and transformers to enhance accuracy in predicting IT incidents. Furthermore, it explored how AI for IT Operations (AIOps) facilitates the automation and proactive management of incidents, thereby optimizing operational efficiency and system availability. The findings underscore the effectiveness of these technologies in reducing incident resolution times and improving organizational resilience against emerging technological challenges. Overall, this review emphasizes the importance of continuous innovation and strategic integration of AI in IT service management to enhance operational efficiency and strengthen organizational adaptability.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
texto
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/177
https://doi.org/10.48168/innosoft.s16.a177
https://purl.org/42411/s16/a177
https://n2t.net/ark:/42411/s16/a177
url https://revistas.ulasalle.edu.pe/innosoft/article/view/177
https://doi.org/10.48168/innosoft.s16.a177
https://purl.org/42411/s16/a177
https://n2t.net/ark:/42411/s16/a177
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/177/250
https://revistas.ulasalle.edu.pe/innosoft/article/view/177/251
dc.rights.none.fl_str_mv Derechos de autor 2024 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 5 No 2 (2024): September - February; 85-103
Innovación y Software; Vol. 5 Núm. 2 (2024): Septiembre - Febrero; 85-103
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s16
https://purl.org/42411/s16
https://n2t.net/ark:/42411/s16
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845894997012905984
score 13.040638
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).