Ranking of tutorials on YouTube based on the analysis of feelings made to their comments

Descripción del Articulo

The flow of information arises day by day through the Internet in a continuous way thanks to the constant interactions between users, these interactions present feelings that can be positive or negative. This helps social media content creators a lot to understand how useful what they do is for thei...

Descripción completa

Detalles Bibliográficos
Autores: Goyzueta Torres, Valeria Alejandra, Centeno Cardenas, Ronald Fabricio, Ranilla Coaguila, Victor Andre
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/66
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/66
https://doi.org/10.48168/innosoft.s9.a66
https://purl.org/42411/s9/a66
https://n2t.net/ark:/42411/s9/a66
Nivel de acceso:acceso abierto
Materia:Sentiment Analysis
Youtube Comments
Video Ranking
Análisis de sentimientos
Comentarios de youtube
Clasificación de videos
id REVUSALLE_467d328963dbafa58f1149b53c2bc668
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/66
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Ranking of tutorials on YouTube based on the analysis of feelings made to their commentsClasificación de tutoriales en YouTube basándonos en el análisis de sentimientos realizados a sus comentariosGoyzueta Torres, Valeria AlejandraCenteno Cardenas, Ronald FabricioRanilla Coaguila, Victor AndreSentiment AnalysisYoutube CommentsVideo RankingAnálisis de sentimientosComentarios de youtubeClasificación de videosThe flow of information arises day by day through the Internet in a continuous way thanks to the constant interactions between users, these interactions present feelings that can be positive or negative. This helps social media content creators a lot to understand how useful what they do is for their followers, and if these are a large number, an analysis done by a single person is not enough. For this, it is necessary to use tools that operate with large amounts of data, such as BERT, which is a model that helps analyze sentiments and classify comments based on what one of them expresses. In this work, this model will be used for the classification of YouTube comments and the classification of videos on this same platform, evaluating these videos according to their content and helping viewers to choose the videos if they help them concerning what is expected. find searching. This work will also use future metrics and suggestions for the proposal.El flujo de información surge día a día mediante internet de manera continua gracias a las constantes interacciones presentes entre los usuarios, estas interacciones presentan sentimientos que pueden ser positivos o negativos. Esto ayuda mucho a los creadores de contenido de las redes sociales a comprender cuan útil es lo que ellos hacen para sus seguidores, y es que, si estos son un gran número, un análisis hecho por una sola persona no es suficiente. Para ello es necesario el uso de herramientas que operan con grandes cantidades de datos como BERT, que es un modelo que ayuda al análisis de sentimientos y clasificación de comentarios basados en lo que expresa uno de estos. En este trabajo se usará este modelo para la clasificación de comentarios de YouTube y clasificación de videos de esta misma plataforma, valorando estos videos según su contenido y ayudando a los espectadores a elegir los videos si es que estos lo ayudarán con respecto a lo que se encuentran buscando. Se harán además uso de métricas y de sugerencias futuras para la propuesta mencionada en este trabajo.Universidad La Salle2022-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/66https://doi.org/10.48168/innosoft.s9.a66https://purl.org/42411/s9/a66https://n2t.net/ark:/42411/s9/a66Innovation and Software; Vol 3 No 2 (2022): September - February; 52-69Innovación y Software; Vol. 3 Núm. 2 (2022): Septiembre - Febrero; 52-692708-09352708-0927https://doi.org/10.48168/innosoft.s9https://purl.org/42411/s9https://n2t.net/ark:/42411/s9reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/66/71https://revistas.ulasalle.edu.pe/innosoft/article/view/66/72https://purl.org/42411/s9/a66/g71https://purl.org/42411/s9/a66/g72https://n2t.net/ark:/42411/s9/a66/g71https://n2t.net/ark:/42411/s9/a66/g7220222022Derechos de autor 2022 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/662025-07-03T08:01:58Z
dc.title.none.fl_str_mv Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
Clasificación de tutoriales en YouTube basándonos en el análisis de sentimientos realizados a sus comentarios
title Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
spellingShingle Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
Goyzueta Torres, Valeria Alejandra
Sentiment Analysis
Youtube Comments
Video Ranking
Análisis de sentimientos
Comentarios de youtube
Clasificación de videos
title_short Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
title_full Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
title_fullStr Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
title_full_unstemmed Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
title_sort Ranking of tutorials on YouTube based on the analysis of feelings made to their comments
dc.creator.none.fl_str_mv Goyzueta Torres, Valeria Alejandra
Centeno Cardenas, Ronald Fabricio
Ranilla Coaguila, Victor Andre
author Goyzueta Torres, Valeria Alejandra
author_facet Goyzueta Torres, Valeria Alejandra
Centeno Cardenas, Ronald Fabricio
Ranilla Coaguila, Victor Andre
author_role author
author2 Centeno Cardenas, Ronald Fabricio
Ranilla Coaguila, Victor Andre
author2_role author
author
dc.subject.none.fl_str_mv Sentiment Analysis
Youtube Comments
Video Ranking
Análisis de sentimientos
Comentarios de youtube
Clasificación de videos
topic Sentiment Analysis
Youtube Comments
Video Ranking
Análisis de sentimientos
Comentarios de youtube
Clasificación de videos
description The flow of information arises day by day through the Internet in a continuous way thanks to the constant interactions between users, these interactions present feelings that can be positive or negative. This helps social media content creators a lot to understand how useful what they do is for their followers, and if these are a large number, an analysis done by a single person is not enough. For this, it is necessary to use tools that operate with large amounts of data, such as BERT, which is a model that helps analyze sentiments and classify comments based on what one of them expresses. In this work, this model will be used for the classification of YouTube comments and the classification of videos on this same platform, evaluating these videos according to their content and helping viewers to choose the videos if they help them concerning what is expected. find searching. This work will also use future metrics and suggestions for the proposal.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/66
https://doi.org/10.48168/innosoft.s9.a66
https://purl.org/42411/s9/a66
https://n2t.net/ark:/42411/s9/a66
url https://revistas.ulasalle.edu.pe/innosoft/article/view/66
https://doi.org/10.48168/innosoft.s9.a66
https://purl.org/42411/s9/a66
https://n2t.net/ark:/42411/s9/a66
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/66/71
https://revistas.ulasalle.edu.pe/innosoft/article/view/66/72
https://purl.org/42411/s9/a66/g71
https://purl.org/42411/s9/a66/g72
https://n2t.net/ark:/42411/s9/a66/g71
https://n2t.net/ark:/42411/s9/a66/g72
dc.rights.none.fl_str_mv Derechos de autor 2022 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2022
2022
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 3 No 2 (2022): September - February; 52-69
Innovación y Software; Vol. 3 Núm. 2 (2022): Septiembre - Febrero; 52-69
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s9
https://purl.org/42411/s9
https://n2t.net/ark:/42411/s9
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844626634378838016
score 13.403676
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).