The Impact of Code-Generating AI on the Work of Programmers

Descripción del Articulo

This study analyzed the impact of code-generating artificial intelligences (AI), such as GitHub Copilot, on programmers' work. It aimed to determine how these tools affect productivity and code quality, differentiating their effects based on developers' experience levels. A systematic lite...

Descripción completa

Detalles Bibliográficos
Autores: Rivas Verastegui, Kevin, Tirado Ruiz, Elmo, Torres Villanueva, Marcelino
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/228
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/228
https://doi.org/10.48168/innosoft.s23.a228
https://purl.org/42411/s23/a228
https://n2t.net/ark:/42411/s23/a228
Nivel de acceso:acceso abierto
Materia:automation
software development
GitHub Copilot
artificial intelligence
productivity
automatización
desarrollo de software
inteligencia artificial
productividad
Descripción
Sumario:This study analyzed the impact of code-generating artificial intelligences (AI), such as GitHub Copilot, on programmers' work. It aimed to determine how these tools affect productivity and code quality, differentiating their effects based on developers' experience levels. A systematic literature review and tool analysis were conducted, using the PRISMA methodology to assess experimental studies and usage reports. Results revealed that code-generating AIs improved productivity by up to 55.8% for experienced programmers, while less experienced developers exhibited increased reliance and confidence in generated code, leading to security risks. Additionally, benefits included reduced development times and democratized access to software, though ethical and technical risks related to overdependence and loss of fundamental skills were noted. These findings underscore the need for strategies that combine these technologies with continuous learning and responsible practices. In conclusion, code-generating AIs are catalysts for software development but require a balanced approach to maximize their advantages and address their challenges
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).