Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics

Descripción del Articulo

Technological innovation in the control of myoelectric prostheses is essential for improving the functionality of people with motor disabilities. This study aimed to design and implement a non-invasive system for acquiring electromyographic (EMG) signals to classify basic upper limb movements using...

Descripción completa

Detalles Bibliográficos
Autores: Nizama Silva, Gerson Moises, Córdova Miranda, Tito Leoncio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Privada de Tacna
Repositorio:Revistas - Universidad Privada de Tacna
Lenguaje:español
OAI Identifier:oai:revistas.upt.edu.pe:article/1007
Enlace del recurso:https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007
Nivel de acceso:acceso abierto
Materia:biopotenciales musculares
inteligencia artificial
redes neuronales
señales EMG
muscular biopotentials
artificial intelligence
neural networks
EMG signals
id REVUPT_046996dc28ab6a27c556a6c847534f89
oai_identifier_str oai:revistas.upt.edu.pe:article/1007
network_acronym_str REVUPT
network_name_str Revistas - Universidad Privada de Tacna
repository_id_str
spelling Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prostheticsRedes neuronales y biopotenciales musculares: Hacia un control más natural de prótesis mioeléctricas Nizama Silva, Gerson MoisesCórdova Miranda, Tito Leonciobiopotenciales muscularesinteligencia artificialredes neuronalesseñales EMGmuscular biopotentialsartificial intelligenceneural networksEMG signalsTechnological innovation in the control of myoelectric prostheses is essential for improving the functionality of people with motor disabilities. This study aimed to design and implement a non-invasive system for acquiring electromyographic (EMG) signals to classify basic upper limb movements using neural networks. The experimental methodology included hardware design, subject preparation, and EMG signal capture in three hand states (extended, relaxed, and closed). Disposable electrodes with conductive gel were placed on the forearm muscles, and a SichyRay board was used to amplify and digitize signals at 1 kHz and 10 bits. Signal processing included high-pass filters (5 Hz), low-pass filters (450 Hz), and segmentation into 200 ms windows. Google Colab, TensorFlow, and Scikit-learn were used for data analysis and classification. Three neural network models were evaluated: a feedforward neural network (FNN), a recurrent network with LSTM (RNN), and a convolutional neural network (CNN), each trained for 50 epochs. The CNN proved to be the most accurate model, with an accuracy of 92.69 % and the lowest loss rate (7.31 %), outperforming the feedforward network (91.86 %) and the RNN (90.95 %). These results highlight the superiority of convolutional networks in EMG signal classification.La innovación tecnológica en el control de prótesis mioeléctricas es esencial para mejorar la funcionalidad de personas con discapacidad motora. Este estudio tuvo como objetivo diseñar e implementar un sistema no invasivo de adquisición de señales electromiográficas (EMG) para clasificar los movimientos básicos de miembros superiores utilizando redes neuronales. La metodología experimental incluyó el diseño de hardware, preparación del sujeto y captura de señales EMG en tres estados de la mano (extendida, relajada, y cerrada). Se utilizaron electrodos desechables con gel conductor en los músculos del antebrazo y una tarjeta SichyRay para amplificar y digitalizar señales a 1 kHz y 10 bits. El procesamiento de las señales incluyó filtros pasa altos (5 Hz) y bajos (450 Hz) y la segmentación en ventanas de 200 ms. Se emplearon Google Colab, TensorFlow y Scikit-learn para análisis y clasificación de datos. Se evaluaron tres modelos de redes neuronales: una red secuencial (FNN), una red recurrente con LSTM (RNN) y una red convolucional (CNN), cada uno entrenado durante 50 épocas.  La CNN demostró ser el modelo más preciso, con una precisión del 92,69 % y la menor tasa de pérdida (7,31 %), superando a la red secuencial (91,86 %) y la RNN (90,95 %). Estos resultados destacan la superioridad de las redes convolucionales en la clasificación de señales EMG.UNIVERSIDAD PRIVADA DE TACNA2024-10-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/100710.47796/ing.v6i00.1007INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería InvestigaINGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga2708-303910.47796/ing.v6i00reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007/958Derechos de autor 2024 Gerson Moises Nizama Silva, Tito Leoncio Córdova Mirandahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/10072024-12-04T22:49:51Z
dc.title.none.fl_str_mv Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
Redes neuronales y biopotenciales musculares: Hacia un control más natural de prótesis mioeléctricas
title Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
spellingShingle Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
Nizama Silva, Gerson Moises
biopotenciales musculares
inteligencia artificial
redes neuronales
señales EMG
muscular biopotentials
artificial intelligence
neural networks
EMG signals
title_short Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
title_full Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
title_fullStr Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
title_full_unstemmed Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
title_sort Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
dc.creator.none.fl_str_mv Nizama Silva, Gerson Moises
Córdova Miranda, Tito Leoncio
author Nizama Silva, Gerson Moises
author_facet Nizama Silva, Gerson Moises
Córdova Miranda, Tito Leoncio
author_role author
author2 Córdova Miranda, Tito Leoncio
author2_role author
dc.subject.none.fl_str_mv biopotenciales musculares
inteligencia artificial
redes neuronales
señales EMG
muscular biopotentials
artificial intelligence
neural networks
EMG signals
topic biopotenciales musculares
inteligencia artificial
redes neuronales
señales EMG
muscular biopotentials
artificial intelligence
neural networks
EMG signals
description Technological innovation in the control of myoelectric prostheses is essential for improving the functionality of people with motor disabilities. This study aimed to design and implement a non-invasive system for acquiring electromyographic (EMG) signals to classify basic upper limb movements using neural networks. The experimental methodology included hardware design, subject preparation, and EMG signal capture in three hand states (extended, relaxed, and closed). Disposable electrodes with conductive gel were placed on the forearm muscles, and a SichyRay board was used to amplify and digitize signals at 1 kHz and 10 bits. Signal processing included high-pass filters (5 Hz), low-pass filters (450 Hz), and segmentation into 200 ms windows. Google Colab, TensorFlow, and Scikit-learn were used for data analysis and classification. Three neural network models were evaluated: a feedforward neural network (FNN), a recurrent network with LSTM (RNN), and a convolutional neural network (CNN), each trained for 50 epochs. The CNN proved to be the most accurate model, with an accuracy of 92.69 % and the lowest loss rate (7.31 %), outperforming the feedforward network (91.86 %) and the RNN (90.95 %). These results highlight the superiority of convolutional networks in EMG signal classification.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007
10.47796/ing.v6i00.1007
url https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007
identifier_str_mv 10.47796/ing.v6i00.1007
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007/958
dc.rights.none.fl_str_mv Derechos de autor 2024 Gerson Moises Nizama Silva, Tito Leoncio Córdova Miranda
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Gerson Moises Nizama Silva, Tito Leoncio Córdova Miranda
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
dc.source.none.fl_str_mv INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga
INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga
2708-3039
10.47796/ing.v6i00
reponame:Revistas - Universidad Privada de Tacna
instname:Universidad Privada de Tacna
instacron:UPT
instname_str Universidad Privada de Tacna
instacron_str UPT
institution UPT
reponame_str Revistas - Universidad Privada de Tacna
collection Revistas - Universidad Privada de Tacna
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1849962814353965056
score 12.650273
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).