Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics
Descripción del Articulo
Technological innovation in the control of myoelectric prostheses is essential for improving the functionality of people with motor disabilities. This study aimed to design and implement a non-invasive system for acquiring electromyographic (EMG) signals to classify basic upper limb movements using...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Privada de Tacna |
| Repositorio: | Revistas - Universidad Privada de Tacna |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.upt.edu.pe:article/1007 |
| Enlace del recurso: | https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007 |
| Nivel de acceso: | acceso abierto |
| Materia: | biopotenciales musculares inteligencia artificial redes neuronales señales EMG muscular biopotentials artificial intelligence neural networks EMG signals |
| id |
REVUPT_046996dc28ab6a27c556a6c847534f89 |
|---|---|
| oai_identifier_str |
oai:revistas.upt.edu.pe:article/1007 |
| network_acronym_str |
REVUPT |
| network_name_str |
Revistas - Universidad Privada de Tacna |
| repository_id_str |
|
| spelling |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prostheticsRedes neuronales y biopotenciales musculares: Hacia un control más natural de prótesis mioeléctricas Nizama Silva, Gerson MoisesCórdova Miranda, Tito Leonciobiopotenciales muscularesinteligencia artificialredes neuronalesseñales EMGmuscular biopotentialsartificial intelligenceneural networksEMG signalsTechnological innovation in the control of myoelectric prostheses is essential for improving the functionality of people with motor disabilities. This study aimed to design and implement a non-invasive system for acquiring electromyographic (EMG) signals to classify basic upper limb movements using neural networks. The experimental methodology included hardware design, subject preparation, and EMG signal capture in three hand states (extended, relaxed, and closed). Disposable electrodes with conductive gel were placed on the forearm muscles, and a SichyRay board was used to amplify and digitize signals at 1 kHz and 10 bits. Signal processing included high-pass filters (5 Hz), low-pass filters (450 Hz), and segmentation into 200 ms windows. Google Colab, TensorFlow, and Scikit-learn were used for data analysis and classification. Three neural network models were evaluated: a feedforward neural network (FNN), a recurrent network with LSTM (RNN), and a convolutional neural network (CNN), each trained for 50 epochs. The CNN proved to be the most accurate model, with an accuracy of 92.69 % and the lowest loss rate (7.31 %), outperforming the feedforward network (91.86 %) and the RNN (90.95 %). These results highlight the superiority of convolutional networks in EMG signal classification.La innovación tecnológica en el control de prótesis mioeléctricas es esencial para mejorar la funcionalidad de personas con discapacidad motora. Este estudio tuvo como objetivo diseñar e implementar un sistema no invasivo de adquisición de señales electromiográficas (EMG) para clasificar los movimientos básicos de miembros superiores utilizando redes neuronales. La metodología experimental incluyó el diseño de hardware, preparación del sujeto y captura de señales EMG en tres estados de la mano (extendida, relajada, y cerrada). Se utilizaron electrodos desechables con gel conductor en los músculos del antebrazo y una tarjeta SichyRay para amplificar y digitalizar señales a 1 kHz y 10 bits. El procesamiento de las señales incluyó filtros pasa altos (5 Hz) y bajos (450 Hz) y la segmentación en ventanas de 200 ms. Se emplearon Google Colab, TensorFlow y Scikit-learn para análisis y clasificación de datos. Se evaluaron tres modelos de redes neuronales: una red secuencial (FNN), una red recurrente con LSTM (RNN) y una red convolucional (CNN), cada uno entrenado durante 50 épocas. La CNN demostró ser el modelo más preciso, con una precisión del 92,69 % y la menor tasa de pérdida (7,31 %), superando a la red secuencial (91,86 %) y la RNN (90,95 %). Estos resultados destacan la superioridad de las redes convolucionales en la clasificación de señales EMG.UNIVERSIDAD PRIVADA DE TACNA2024-10-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/100710.47796/ing.v6i00.1007INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería InvestigaINGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga2708-303910.47796/ing.v6i00reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007/958Derechos de autor 2024 Gerson Moises Nizama Silva, Tito Leoncio Córdova Mirandahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/10072024-12-04T22:49:51Z |
| dc.title.none.fl_str_mv |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics Redes neuronales y biopotenciales musculares: Hacia un control más natural de prótesis mioeléctricas |
| title |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics |
| spellingShingle |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics Nizama Silva, Gerson Moises biopotenciales musculares inteligencia artificial redes neuronales señales EMG muscular biopotentials artificial intelligence neural networks EMG signals |
| title_short |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics |
| title_full |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics |
| title_fullStr |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics |
| title_full_unstemmed |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics |
| title_sort |
Neural networks and muscle bio-potentials: towards a more natural control of myoelectric prosthetics |
| dc.creator.none.fl_str_mv |
Nizama Silva, Gerson Moises Córdova Miranda, Tito Leoncio |
| author |
Nizama Silva, Gerson Moises |
| author_facet |
Nizama Silva, Gerson Moises Córdova Miranda, Tito Leoncio |
| author_role |
author |
| author2 |
Córdova Miranda, Tito Leoncio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
biopotenciales musculares inteligencia artificial redes neuronales señales EMG muscular biopotentials artificial intelligence neural networks EMG signals |
| topic |
biopotenciales musculares inteligencia artificial redes neuronales señales EMG muscular biopotentials artificial intelligence neural networks EMG signals |
| description |
Technological innovation in the control of myoelectric prostheses is essential for improving the functionality of people with motor disabilities. This study aimed to design and implement a non-invasive system for acquiring electromyographic (EMG) signals to classify basic upper limb movements using neural networks. The experimental methodology included hardware design, subject preparation, and EMG signal capture in three hand states (extended, relaxed, and closed). Disposable electrodes with conductive gel were placed on the forearm muscles, and a SichyRay board was used to amplify and digitize signals at 1 kHz and 10 bits. Signal processing included high-pass filters (5 Hz), low-pass filters (450 Hz), and segmentation into 200 ms windows. Google Colab, TensorFlow, and Scikit-learn were used for data analysis and classification. Three neural network models were evaluated: a feedforward neural network (FNN), a recurrent network with LSTM (RNN), and a convolutional neural network (CNN), each trained for 50 epochs. The CNN proved to be the most accurate model, with an accuracy of 92.69 % and the lowest loss rate (7.31 %), outperforming the feedforward network (91.86 %) and the RNN (90.95 %). These results highlight the superiority of convolutional networks in EMG signal classification. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-10-28 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007 10.47796/ing.v6i00.1007 |
| url |
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007 |
| identifier_str_mv |
10.47796/ing.v6i00.1007 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1007/958 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2024 Gerson Moises Nizama Silva, Tito Leoncio Córdova Miranda http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2024 Gerson Moises Nizama Silva, Tito Leoncio Córdova Miranda http://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
UNIVERSIDAD PRIVADA DE TACNA |
| publisher.none.fl_str_mv |
UNIVERSIDAD PRIVADA DE TACNA |
| dc.source.none.fl_str_mv |
INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga 2708-3039 10.47796/ing.v6i00 reponame:Revistas - Universidad Privada de Tacna instname:Universidad Privada de Tacna instacron:UPT |
| instname_str |
Universidad Privada de Tacna |
| instacron_str |
UPT |
| institution |
UPT |
| reponame_str |
Revistas - Universidad Privada de Tacna |
| collection |
Revistas - Universidad Privada de Tacna |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1849962814353965056 |
| score |
12.650273 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).