Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations

Descripción del Articulo

We present a classification of irregular singular points and infinity of second-order linear differential equations; Furthermore, we show some Wronskian results of the solutions and their derivatives for those equations. We use the bibliographic reference of Butkov and Krantz for the development of...

Descripción completa

Detalles Bibliográficos
Autor: Condori Condori, Jos´e Luis
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/20942
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20942
Nivel de acceso:acceso abierto
Materia:analytic functions
singular points
wronskian
funciones anal´ıticas
puntos singulares
wronskiano
id REVUNMSM_d5adbcce3ce319198ba7bc4ebbf7dac0
oai_identifier_str oai:ojs.csi.unmsm:article/20942
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential EquationsNotas sobre puntos singulares irregulares de ecuaciones diferenciales lineales de segundo orden y el wronskianoCondori Condori, Jos´e LuisCondori Condori, Jos´e Luisanalytic functionssingular pointswronskianfunciones anal´ıticaspuntos singulareswronskianoWe present a classification of irregular singular points and infinity of second-order linear differential equations; Furthermore, we show some Wronskian results of the solutions and their derivatives for those equations. We use the bibliographic reference of Butkov and Krantz for the development of the theoretical framework, Sabbah focuses the case on complex manifolds and Scardua-León on second and third order differential equations. To achieve the results we repeatedly use the inductive-deductive method and the handling of the indices for the series.Presentamos una clasificación de los puntos singulares irregulares y el infinito de las ecuaciones diferenciales lineales de segundo orden; además, mostramos algunos resultados del wronskiano de las soluciones y sus derivadas para esas ecuaciones. Usamos la referencia bibliográfica de Butkov y Krantz para el desarrollo del marco teórico, Sabbah enfoca el caso en variedades complejas y Scardua-León a ecuaciones diferenciales de segundo y tercer orden. Para conseguir los resultados empleamos reiteradamente el método inductivo-deductivo y el manejo de los ´índices para las series.Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2022-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/2094210.15381/pesquimat.v25i2.20942Pesquimat; Vol. 25 No. 2 (2022); 16-31Pesquimat; Vol. 25 Núm. 2 (2022); 16-311609-84391560-912Xreponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20942/19010Derechos de autor 2022 Jos´e Luis Condori Condorihttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/209422022-12-30T23:32:54Z
dc.title.none.fl_str_mv Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
Notas sobre puntos singulares irregulares de ecuaciones diferenciales lineales de segundo orden y el wronskiano
title Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
spellingShingle Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
Condori Condori, Jos´e Luis
analytic functions
singular points
wronskian
funciones anal´ıticas
puntos singulares
wronskiano
title_short Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
title_full Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
title_fullStr Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
title_full_unstemmed Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
title_sort Notes on Irregular Singular Points of Wronskian and Second-Order Linear Differential Equations
dc.creator.none.fl_str_mv Condori Condori, Jos´e Luis
Condori Condori, Jos´e Luis
author Condori Condori, Jos´e Luis
author_facet Condori Condori, Jos´e Luis
author_role author
dc.subject.none.fl_str_mv analytic functions
singular points
wronskian
funciones anal´ıticas
puntos singulares
wronskiano
topic analytic functions
singular points
wronskian
funciones anal´ıticas
puntos singulares
wronskiano
description We present a classification of irregular singular points and infinity of second-order linear differential equations; Furthermore, we show some Wronskian results of the solutions and their derivatives for those equations. We use the bibliographic reference of Butkov and Krantz for the development of the theoretical framework, Sabbah focuses the case on complex manifolds and Scardua-León on second and third order differential equations. To achieve the results we repeatedly use the inductive-deductive method and the handling of the indices for the series.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20942
10.15381/pesquimat.v25i2.20942
url https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20942
identifier_str_mv 10.15381/pesquimat.v25i2.20942
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20942/19010
dc.rights.none.fl_str_mv Derechos de autor 2022 Jos´e Luis Condori Condori
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Jos´e Luis Condori Condori
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
dc.source.none.fl_str_mv Pesquimat; Vol. 25 No. 2 (2022); 16-31
Pesquimat; Vol. 25 Núm. 2 (2022); 16-31
1609-8439
1560-912X
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238281152036864
score 13.904009
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).