Predicción de Fallos Cardiacos usando Machine Learning: Una revisión sistemática de la literatura
Descripción del Articulo
El desarrollo de la Inteligencia Artificial (IA), hoy está en su auge, y eso despierta el interés de la comunidad científica para hacer estudios usando Machine Learning (ML) una de sus ramas de la IA, que mediante algoritmos o modelos entrenados se puede predecir fallos cardiacos. Según la búsqueda...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
| Lenguaje: | español |
| OAI Identifier: | oai:revistasinvestigacion.unmsm.edu.pe:article/29141 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/29141 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial Intelligence Machine Learning heart failures |
| Sumario: | El desarrollo de la Inteligencia Artificial (IA), hoy está en su auge, y eso despierta el interés de la comunidad científica para hacer estudios usando Machine Learning (ML) una de sus ramas de la IA, que mediante algoritmos o modelos entrenados se puede predecir fallos cardiacos. Según la búsqueda de literatura que se realizó, se encontró que en los estudios se utilizan variables para predecir fallos cardiacos las más utilizadas es la edad, el sexo, la glucosa en ayunas, la presión arterial sistola y el colesterol LDL. Así mismo se realiza un preprocesado de datos, el cual tiene fases y las más usadas son el Reescalamiento, Limpieza de datos, Agrupamiento, Codificación de datos, Detección de valores atípicos. También se ha visto que la mayoría de los estudios proponen sus metodologías y las fases más empleadas son el Preprocesamiento, Aplicación de modelos, Análisis de resultados, Train-test, Clasificación de datos, Selección de modelo o algoritmo. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).