Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer

Descripción del Articulo

Cervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. T...

Descripción completa

Detalles Bibliográficos
Autores: Paulino Flores, Luis A., Huayna Dueñas, Ana M.
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/16360
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360
Nivel de acceso:acceso abierto
Materia:Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing
Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística
id REVUNMSM_b2501b6b126ecabbb195d393cf37a399
oai_identifier_str oai:ojs.csi.unmsm:article/16360
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancerSistema Experto Probabilístico basado en Redes Bayesianas para la predicción del cáncer de cuello uterinoPaulino Flores, Luis A.Huayna Dueñas, Ana M.Predictive models; Bayes methods; Prediction algorithms; Probabilistic ComputingModelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación ProbabilísticaCervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. The following paper shows the cervical cancer risk prediction, by implementing a probabilistic model based on Bayesian Networks and using 322 instances where we could retrieve 15 different features that are known information from each patient. The tests were made using the 40% of the whole dataset, confusion matrix and AUC indicator. The results show that this work has raised a 96% of success rate as well as 0.9864 in terms of the AUC indicator, in addition to this, the results suggest that Bayesian Networks are able to reach a high performance and provide transparency during the inference process at the same time, something that does not happen in many other techniques, and that they are really efficient to face this sort of prediction problems.El cáncer de cuello uterino es el cuarto cáncer más frecuente en la mujer. Una gran variedad de técnicas utilizadas en la Inteligencia Artificial (IA) como las Redes Neuronales, las Máquinas de Vectores de Soporte (SVM), los Árboles de Decisión y otros; han abordado el problema de la predicción de esta enfermedad. El siguiente artículo muestra la predicción de riesgo de cáncer de cuello uterino usando un modelo probabilístico basado en Redes Bayesianas; donde de un total de 322 registros se pudo obtener 15 atributos o características diferentes que correspondan a la información de una paciente. Las pruebas fueron realizadas utilizando el 40% de los datos, matrices de confusión y el indicador AUC. Los resultados le otorgan al trabajo desarrollado una tasa de éxito del 96% así como un valor de 0.9864 en términos del indicador AUC, además, sugieren que las Redes Bayesianas alcanzan un alto rendimiento, así como también ofrecen transparencia durante el proceso de inferencia, algo que no sucede con muchas otras técnicas, y que son ideales para afrontar problemas de predicción.Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática2019-07-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/1636010.15381/rpcs.v2i1.16360Revista Peruana de Computación y Sistemas; Vol. 2 No. 1 (2019)Revista peruana de computación y sistemas; Vol. 2 Núm. 1 (2019)2617-2003reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360/14138Derechos de autor 2019 Luis A. Paulino Flores, Ana M. Huayna Dueñashttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/163602019-07-10T15:16:39Z
dc.title.none.fl_str_mv Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
Sistema Experto Probabilístico basado en Redes Bayesianas para la predicción del cáncer de cuello uterino
title Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
spellingShingle Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
Paulino Flores, Luis A.
Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing
Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística
title_short Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
title_full Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
title_fullStr Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
title_full_unstemmed Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
title_sort Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
dc.creator.none.fl_str_mv Paulino Flores, Luis A.
Huayna Dueñas, Ana M.
author Paulino Flores, Luis A.
author_facet Paulino Flores, Luis A.
Huayna Dueñas, Ana M.
author_role author
author2 Huayna Dueñas, Ana M.
author2_role author
dc.subject.none.fl_str_mv Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing
Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística
topic Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing
Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística
description Cervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. The following paper shows the cervical cancer risk prediction, by implementing a probabilistic model based on Bayesian Networks and using 322 instances where we could retrieve 15 different features that are known information from each patient. The tests were made using the 40% of the whole dataset, confusion matrix and AUC indicator. The results show that this work has raised a 96% of success rate as well as 0.9864 in terms of the AUC indicator, in addition to this, the results suggest that Bayesian Networks are able to reach a high performance and provide transparency during the inference process at the same time, something that does not happen in many other techniques, and that they are really efficient to face this sort of prediction problems.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360
10.15381/rpcs.v2i1.16360
url https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360
identifier_str_mv 10.15381/rpcs.v2i1.16360
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360/14138
dc.rights.none.fl_str_mv Derechos de autor 2019 Luis A. Paulino Flores, Ana M. Huayna Dueñas
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2019 Luis A. Paulino Flores, Ana M. Huayna Dueñas
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática
dc.source.none.fl_str_mv Revista Peruana de Computación y Sistemas; Vol. 2 No. 1 (2019)
Revista peruana de computación y sistemas; Vol. 2 Núm. 1 (2019)
2617-2003
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238282050666496
score 13.946272
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).