Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer
Descripción del Articulo
Cervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. T...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.csi.unmsm:article/16360 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360 |
| Nivel de acceso: | acceso abierto |
| Materia: | Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística |
| id |
REVUNMSM_b2501b6b126ecabbb195d393cf37a399 |
|---|---|
| oai_identifier_str |
oai:ojs.csi.unmsm:article/16360 |
| network_acronym_str |
REVUNMSM |
| network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
| repository_id_str |
|
| spelling |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancerSistema Experto Probabilístico basado en Redes Bayesianas para la predicción del cáncer de cuello uterinoPaulino Flores, Luis A.Huayna Dueñas, Ana M.Predictive models; Bayes methods; Prediction algorithms; Probabilistic ComputingModelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación ProbabilísticaCervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. The following paper shows the cervical cancer risk prediction, by implementing a probabilistic model based on Bayesian Networks and using 322 instances where we could retrieve 15 different features that are known information from each patient. The tests were made using the 40% of the whole dataset, confusion matrix and AUC indicator. The results show that this work has raised a 96% of success rate as well as 0.9864 in terms of the AUC indicator, in addition to this, the results suggest that Bayesian Networks are able to reach a high performance and provide transparency during the inference process at the same time, something that does not happen in many other techniques, and that they are really efficient to face this sort of prediction problems.El cáncer de cuello uterino es el cuarto cáncer más frecuente en la mujer. Una gran variedad de técnicas utilizadas en la Inteligencia Artificial (IA) como las Redes Neuronales, las Máquinas de Vectores de Soporte (SVM), los Árboles de Decisión y otros; han abordado el problema de la predicción de esta enfermedad. El siguiente artículo muestra la predicción de riesgo de cáncer de cuello uterino usando un modelo probabilístico basado en Redes Bayesianas; donde de un total de 322 registros se pudo obtener 15 atributos o características diferentes que correspondan a la información de una paciente. Las pruebas fueron realizadas utilizando el 40% de los datos, matrices de confusión y el indicador AUC. Los resultados le otorgan al trabajo desarrollado una tasa de éxito del 96% así como un valor de 0.9864 en términos del indicador AUC, además, sugieren que las Redes Bayesianas alcanzan un alto rendimiento, así como también ofrecen transparencia durante el proceso de inferencia, algo que no sucede con muchas otras técnicas, y que son ideales para afrontar problemas de predicción.Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática2019-07-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/1636010.15381/rpcs.v2i1.16360Revista Peruana de Computación y Sistemas; Vol. 2 No. 1 (2019)Revista peruana de computación y sistemas; Vol. 2 Núm. 1 (2019)2617-2003reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360/14138Derechos de autor 2019 Luis A. Paulino Flores, Ana M. Huayna Dueñashttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/163602019-07-10T15:16:39Z |
| dc.title.none.fl_str_mv |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer Sistema Experto Probabilístico basado en Redes Bayesianas para la predicción del cáncer de cuello uterino |
| title |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer |
| spellingShingle |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer Paulino Flores, Luis A. Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística |
| title_short |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer |
| title_full |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer |
| title_fullStr |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer |
| title_full_unstemmed |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer |
| title_sort |
Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer |
| dc.creator.none.fl_str_mv |
Paulino Flores, Luis A. Huayna Dueñas, Ana M. |
| author |
Paulino Flores, Luis A. |
| author_facet |
Paulino Flores, Luis A. Huayna Dueñas, Ana M. |
| author_role |
author |
| author2 |
Huayna Dueñas, Ana M. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística |
| topic |
Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística |
| description |
Cervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. The following paper shows the cervical cancer risk prediction, by implementing a probabilistic model based on Bayesian Networks and using 322 instances where we could retrieve 15 different features that are known information from each patient. The tests were made using the 40% of the whole dataset, confusion matrix and AUC indicator. The results show that this work has raised a 96% of success rate as well as 0.9864 in terms of the AUC indicator, in addition to this, the results suggest that Bayesian Networks are able to reach a high performance and provide transparency during the inference process at the same time, something that does not happen in many other techniques, and that they are really efficient to face this sort of prediction problems. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-07-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360 10.15381/rpcs.v2i1.16360 |
| url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360 |
| identifier_str_mv |
10.15381/rpcs.v2i1.16360 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360/14138 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2019 Luis A. Paulino Flores, Ana M. Huayna Dueñas https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2019 Luis A. Paulino Flores, Ana M. Huayna Dueñas https://creativecommons.org/licenses/by-nc-sa/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática |
| publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática |
| dc.source.none.fl_str_mv |
Revista Peruana de Computación y Sistemas; Vol. 2 No. 1 (2019) Revista peruana de computación y sistemas; Vol. 2 Núm. 1 (2019) 2617-2003 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
| instname_str |
Universidad Nacional Mayor de San Marcos |
| instacron_str |
UNMSM |
| institution |
UNMSM |
| reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
| collection |
Revistas - Universidad Nacional Mayor de San Marcos |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1795238282050666496 |
| score |
13.946272 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).